MTH5129 Probability & Statistics II

Coursework 5

. Let X have the probability density function

423, for0 <z <1
fx(z) = .
0, otherwise

Find the probability density function of ¥ = 2X —1 using the transformation
of random variables method.

Solution: This can be proved in many ways, e.g. using the cumulative distri-
bution function method or the transformation of random variables method.
We actually used the former way in last week’s coursework). We use the
latter way here.

Using the direct transformation of random variables method, the inverse of
y=2r—1is g '(y) = (y+1)/2 and the domain is —1 < y < 1 (the initial
range corresponding to 0 < x < 1). We have

d 1

_ -1 i

The theorem of Transformation of random variables implies that

fyr(y) = 4(%1>3%:2<%1>3:i(9+1)3, for —1<y<1

0, otherwise.

. Suppose that X; and X5 have joint probability density function

8[[’1332, 0<$1 < Ty < 1

f(1317$2) = {

0, otherwise.

What is the probability density function of Y3 = X;/X57
Hint: Define an additional variable, e.q. Yo = Xo.

Solution: In this case, we need another variable, thus we choose Y, = X5,
as this choice will allow us to find the inverse easily. Any other choice of Y5
is also acceptable.

The inverse transformation is x; = y; y2 and xg = ys.
The Jacobian is

= Y.

Y2 N
J =
e




The support of (X1, X») is given by A = {0 < 21 < 29 < 1} which implies
that the support of (Y1,Y3) is therefore B = {0 < y1y2 < yo» < 1}. By
rearranging this, we get that B={0<y; <1, 0 <ys < 1}.

So, using the direct transformation of two random variables method

[8(y1 y2)y2] y2 = 8y yé”, for (y1,142) € B
0, otherwise.

fY1,Y2 (yl, y2> = {

We now find the marginal probability density function fy, (y;) of Y;.

We firstly have fy,(y1) = 0 for y; < 0 and y; > 1, due to the support B of
the joint probability density function fy, y,(v1,y2) obtained above.

Moreover, for 0 < y; < 1, we have

4

1 1
fvi(y) = / 8y1ys dys = 8yi [%] =2y
0 0

therefore we have

2y, for0<y <1

le(y1> = {

0, otherwise.

. Suppose X has a normal distribution, N(u,0?), find the moment generating
function of X and then deduce its mean and variance.

Solution:

My(t) = /Ooem ! exp{—%} da

o  OV2T

<1 1
= / exp{ ———=[2? = 2ux + p* — 20%tz] ¢ dx
—o0 OV 2T 202

= /_OO L exp{—i[x2—2x(u+ozt)+u2}} dx

o OV 27 202

Now we complete the square in x:
(22 = 2z(p+0®t) + pi?] = [z — (n+ ) +p” = (u+0°t)°

= [z — (u+ %)) — (2uo’t + o*t?)

and so as the final bracket does not depend on x we can take it outside the
integral to give

MX(t)zeXp(M) /Oo ! exp{—i[x—(ma?t)ﬁ} da

202 —oo OV 2T 202




Now the function inside the integral is the probability density function of a
N(p + 0*t,0%) random variable and so is equal to one. Thus

2t2
Mx (t) = exp <ut+ UT) :

Now differentiating the moment generating function we find

ot?
M'(t) = exp (ut + T) (1 + o),
thus M'(0) = u = E[X]. Moreover,
2t2 2t2
M"(t) = exp (,ut + %) (1 + 0t)* + exp (,ut + %) o2

thus M”(0) = u? + 02 and hence Var[X] = u? + 02 — (u)? = o2
. Let X be a Bin(n,p) random variable.

(a) Find the moment generating function of X.
(b) Find the expectation of X.
(c¢) Find the variance of X.

Solution:

(a) The probabilities of a Bin(n,p) random variable X are given by

PIX =)= (") -

x
for  =0,1,...,n. The moment generating function is given by
Mx(t) == E[e™]
= i e P(X = x)
2=0

& n xX n—x
=3 (%) oera-p
=0
= (pe' +1 —p)™ (by the Binomial Theorem)

Therefore

Mx(t) = (pe' +1—p)"



(b) The expectation of X is given by
E[X] = Mx(0) = n(pe’ + 1 —p)"'pe’|,_, = np
(c) We also have

E[X? = M¥%(0) =n(n —1)(pe' +1 — p)" ?p*e* + n(pe' +1 — p)”’lpet|t:0
=n(n—1)p* +np

hence the variance is given by

Var(X) = n(n — 1)p* +np — (np)® = np(1 — p).

5. Suppose Vi, ..., Y, are independent, normally distributed with mean E[Y;] =
i and variance Var[Y;] = o?. Prove that the sum

— (Y, — pi\?
U= Z ( - a ) has a x?(n) distribution.
i=1 !

Solution: Let v
ZZ — 7 MZ,
op
for all i = 1,...,n. We first have to prove that each Z? has a x*(1) distribu-

tion (Prove this! — answer is in your lecture notes). Therefore,

My (t) = (1 —2t)2

The random variable we aim for can then be rewritten as

=1

Finally, since the Z;’s are independent, due to the X;’s being independent,
we can calculate

My(t) = H My ()

1
(1— 2ty

1\ 2
1
1y

which is the moment generating function of a Ga(n/2,1/2) random variable,

that is a x?(n) random variable.

Note: The above proves that the sum of n independent x?(1) ran-
dom variables has a x?(n) distribution.



6. Suppose X1, Xo,..., X, are independent random variables with cumulant
generating functions Ky, (t), i = 1,...,n. Let Y = >" X, and find the
cumulant generating function Ky () in terms of the Kx,(t), i =1,...,n.

Solution: We have

Ky(t) := InMy(t) = In(E[™])
= In (Bl == Y)
(B[ e ... )
(E[e™]E[e"*?]- - E[e"*"]) (by independence)
= In(Mx, (t)Mx, (1) - -- Mx,, (1))

=

7. Suppose that X is a non-negative random variable with mean u. Prove that
the median is at most 2u. (The median is a value m with P(X >m) > 1/2
and P(X <m) > 1/2: i.e. it is the “middle value”.)

Solution: Suppose m is the median: then we know that P(X > m) > 1/2.
But by Markov’s Inequality we know that
E(X)

<P(X>m)< 2 - 1
m m

N —

Rearranging we get that m < 2u as claimed.

8. Suppose that I toss a fair coin 100 times. Prove that the probability I get
more than or equal to 60 heads or less than or equal to 40 heads is at most
1/4.

Solution: Let X be the number of heads. Then p = E(X) = 50 and
0? = Var(X) = 25. Hence, by Chebyshev’s inequality

P(X <40 or X > 60) = P(|X — 50| > 10)

= P(IX — B(X)| > 10) < — = 1/4.



