## MTH5129 Probability \& Statistics II

## Coursework 4

1. Suppose $X$ and $Y$ are jointly continuous random variables with joint density function

$$
f_{X, Y}(x, y)=c e^{-|x|-|y|}, \quad \forall(x, y) \in \mathbb{R}^{2}
$$

Find whether $X$ and $Y$ are independent.
( $c$ is a constant chosen to make $f_{X, Y}$ a density function).
2. Suppose that $X$ and $Y$ are two random variables.
a) Prove that if $X$ and $Y$ are independent then

$$
E\left(X^{k} Y^{m}\right)=E\left(X^{k}\right) E\left(Y^{m}\right)
$$

b) Deduce that if $X$ and $Y$ are independent then $\operatorname{Corr}(X, Y)=0$.
3. Suppose we choose independently $X$ and $Y$ to be two $\operatorname{Uniform}(0,1)$ random variables. Use their convolution to find the probability density function of their sum $Z=X+Y$.
4. Let $X$ have the probability density function

$$
f_{X}(x)= \begin{cases}4 x^{3}, & \text { for } 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the probability density function of $Y=2 X-1$ using the cumulative distribution function method.
5. Suppose $X$ and $Y$ are two independent $\operatorname{Uniform}(0,1)$ random variables. Use the cumulative distribution function method to find the probability density function of their sum $U=X+Y$.

