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5.2 The Law of Large Numbers (LLN)

The theme in this section is the following: “if we add lots of random variables then the
“errors” average out.”

Before we state and prove the LLN, let us recall the following property of the variance
which plays a very important role in the proof.

Lemma 18. If X1, X2, ..., Xn is a sequence of independent random variables with E(Xi) =
µj, Var(Xj) = σ2

j then

Var

(
n∑
j=1

Xj

)
=

n∑
j=1

σ2
j .

Proof. See Coursework for the proof.

Theorem 19 (Law of Large Numbers). Suppose that X1, X2, . . . is a sequence of inde-
pendent random variables with mean µ and variance σ2. Let

Yn =
1

n

n∑
i=1

Xi.

Then for any number ε > 0

P (|Yn − µ| ≤ ε)→ 1 as n→∞.

Proof. We have

E(Yn) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) = µ,

and

Var(Yn) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
σ2

n
,

where we use two properties of variance: Var(cZ) = c2Var(Z) and Lemma 18.
Hence by Chebyshev’s inequality we have

P (|Yn − µ| > ε) ≤ σ2/n

ε2
=

σ2

nε2
.

Since σ2

nε2
tends to zero as n→∞, so does P (|Yn − µ| > ε). Hence

P (|Yn − µ| ≤ ε) = 1− P (|Yn − µ| > ε)→ 1.

Remark. This is also called the weak LLN. It basically says that for some specified “large”
n, the average Yn of the (X1, . . . , Xn) is likely to be close to the mean µ. In fact, we can
repeat the arguments of the above proof, to also proved a useful estimate:

P (|Yn − µ| ≤ ε) ≥ 1− σ2

nε2
.
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5.3 Central Limit Theorem

We have seen that the average value Yn = 1
n

∑n
k=1Xk converges to the mean (when

the Xk are independent identically distributed random variables with finite variance).
However, different random variables converge at different rates to the mean (that is some
converge more quickly than others). The Central Limit Theorem gives a much more
precise description of the behaviour of the Yn. We basically define a “scaled version” of
Yn which has zero mean and variance 1.

Theorem 20 (Central Limit Theorem). Suppose that X1, X2, X3, . . . are independent
identically distributed random variables with mean µ and variance σ2. Let

Zn =

∑n
k=1Xk − nµ
σ
√
n

Then Zn converges, as n → ∞, to a normal random variable with parameters (0, 1) in
the sense that, for any s, t, such that s < t, we have

P (s ≤ Zn ≤ t)→
∫ t

s

1√
2π
e−x

2/2dx = Φ(t)− Φ(s),

where Φ(z) =
∫ z
−∞

1√
2π
e−x

2/2dx is the cumulative distribution function of a standard
Normal random variable.

Proof. Can be proved using moment generating functions and such a proof can be found
in standard textbooks of probability (this is beyond the scope of this course).

Statistical remarks

(1) The Central Limit Theorem (CLT) only tells you about what happens as n→∞.

(2) However, in Statistics, this is commonly (and very conveniently) used for finite but
large values of n.

Suppose that X1, X2, . . . are independent identically distributed random variables
with mean µ and variance σ2. For “large” n, we define their sum by

Sn =
n∑
k=1

Xk.

According to the CLT,

the distribution of the random variable Zn =
Sn − nµ
σ
√
n

is approximately standard normal.

Using this we can also characterise the distribution of the average Yn as n increases,
which is a very useful result in statistical applications. Namely, we get that

the distribution of the average Yn := Sn

n
is approximately N(µ, σ

2

n
).
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This result justifies also the extensive use of Normal distributions in real-life applications
to model data resulting from many different independent factors (roughly independent)
or when the distribution of data is unknown.

Finally, we can see from the above statements that

the distribution of the random variable Sn is approximately N(nµ, nσ2).

Example. Suppose that Wi is the amount (in pounds) that gambler i wins at a visit
in a casino, for i = 1, 2, . . .. These amounts are considered to be independent random
variables with mean β pounds and variance 4β2.

(i). What is the approximate distribution of the total profit of 100 gamblers?

(ii). What is the approximate probability that the total profit of 100 gamblers is negative
(i.e. casino wins money), if their individual average profit is −£5 for each player
(negative profit translates to a loss)?

Answer. (i). We know that the total profit of 100 customers is given by T100 = W1 +
W2 + · · · + W100 where W1,W2, . . . are their individual profits and we know that they
are independent random variables with mean β and variance 4β2. Hence E(Wi) = β and
Var(Wi) = 4β2. Therefore E(T100) = 100β and Var(T100) = 400β2.

Hence by the approximate Central Limit Theorem

T100 ≈ N
(
100β, 400β2

)
.

(ii). In this case, we have β = −5. The approximate distribution (from part (i)) is
therefore

T100 ≈ N (−500, 10000) .

Supposing that Z ∼ N(0, 1), this implies that

P (T100 < 0) ≈ P
(
Z <

500

100

)
= P (Z < 5) = 0.9987

Therefore, we do not expect that the casino will lose any money with a 99.87% chance.
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