## MTH5129 Probability \& Statistics II

## Coursework 6

1. Prove that, if $X_{1}, X_{2}, \ldots, X_{n}$ is a sequence of independent random variables with $E\left(X_{i}\right)=\mu_{j}, \operatorname{Var}\left(X_{j}\right)=\sigma_{j}^{2}$ then

$$
\operatorname{Var}\left(\sum_{j=1}^{n} X_{j}\right)=\sum_{j=1}^{n} \sigma_{j}^{2} .
$$

2. Suppose that I roll a (fair) die repeatedly. Let $S_{n}$ be the total number of 5's or 6's that I observe after throwing the die $n$ times. What is the

$$
\lim _{n \rightarrow \infty} P\left(0.3 n<S_{n}<0.4 n\right) ?
$$

3. $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean $\mu$ and variance $\sigma^{2}$. How large a sample must be taken in order that you can be $95 \%$ certain that the sample mean

$$
\bar{X}_{n}=\frac{1}{n} \sum_{n}^{i=1} X_{i} \quad \text { is within } 0.1 \sigma \text { of } \mu ?
$$

4. Suppose that I measure the heights of 100 people in London. A person's height has mean 160 cm and standard deviation 15 cm . Find the (approximate) probability that the mean height of these 100 people I measure is over 163 cm . Assume each person's height is independent from the others'. Express your answer in terms of the $\Phi$ function.
5. [Gambler's ruin problem] Suppose that we are gambling repetitively on a game with probability of losing $£ 1$ in each gamble 0.55 and winning $£ 1$ with probability 0.45 . Starting from an initial capital of $£ 20$. Show that the probability we have not gone bankrupt after 1000 games is (approximately) at most 0.0057.
