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MTH5129: Probability & Statistics II

You should attempt ALL questions. Marks available are shown next to the
questions.

In completing this assessment:

• You may use books and notes.

• You may use calculators and computers, but you must show your work-
ing for any calculations you do.

• You may use the Internet as a resource, but not to ask for the solution
to an exam question or to copy any solution you find.

• You must not seek or obtain help from anyone else.

All work should be handwritten and should include your student number.

The exam is available for a period of 24 hours. Upon accessing the exam, you will
have 3 hours in which to complete and submit this assessment.

When you have finished:

• scan your work, convert it to a single PDF file, and submit this file using the
tool below the link to the exam;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.

Please try to upload your work well before the end of the submission window, in case
you experience computer problems. Only one attempt is allowed – once you have
submitted your work, it is final.

IFoA exemptions. For actuarial students, this module counts towards IFoA actuarial
exemptions. To be eligible for IFoA exemption, your must submit your exam
within the first 3 hours of the assessment period.
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In this exam, P (·) denotes a probability measure defined on a space (Ω,F) and E(·)
denotes the expectation with respect to P .

Question 1 [30 marks]. Suppose that X and Y have a joint probability density
function given by

fX,Y (x, y) =

{
ce−3x−5y if x, y ≥ 0

0 otherwise

(a) Determine the value of the normalization constant c. [5]

(b) Find the marginal probability density function fX and state the name of the
distribution of X. [8]

(c) Find the conditional probability density function fY |X=x. [8]

(d) Are the random variables X and Y statistically independent? Justify your answer. [3]

Consider now a different joint probability density function for X and Y , namely

f̃X,Y (x, y) =

{
12ye−3x−2y

2
if x, y ≥ 0

0 otherwise

(e) What is the probability P (Y 2 > 2X > 0) ? [6]

Question 2 [10 marks]. Suppose that X1 and X2 have joint probability density
function

fX1,X2(x1, x2) =

{
1
6
x1x2, if 1 < x1 < 2 and 1 < x2 < 3

0, otherwise.

What is the joint probability density function fY1,Y2 of Y1 = X1/X2 and Y2 = X2? [10]

Question 3 [10 marks]. Suppose that X, Y and Z are statistically independent
random variables, each of them with a χ2(2) distribution.

(a) Find the moment generating function of U = X + 3Y + Z. State clearly and
justify all steps taken. [7]

(b) Calculate the expectation E(U) using the moment generating function. [3]

Hint: You may use without proof the fact that the moment generating function of a
χ2(ν) random variable W is

MW (t) =

(
1

1− 2t

)ν/2
.
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Number of Accidents 0 1 2 3 4 5 6 7+
Observed frequency 50 30 24 30 10 5 1 0

Question 4 [25 marks]. Transport engineers are interested to study the pattern
and the risk of accidents at a junction. Suppose we observe the following frequency
distribution of the number of accidents in 150 weeks.

(a) Find an estimate (to four decimal places) of the average number of accidents in a
week. [6]

(b) Perform a goodness of fit test at the 5% significance level of the null hypothesis
that the observed number of accidents follow a Poisson distribution.
Hint: Use the estimate (to four decimal places) you computed in (a) and report
the expected frequency and observed value of the statistic to four decimal places. [15]

(c) What is the p-value of your test in (b)? Does the p-value indicate that there is
evidence against the null hypothesis? [4]

Question 5 [25 marks]. Twenty patients sampled at random were matched by age
and BMI. One of each pair was assigned at random to a new treatment and the other to
an existing treatment. Ultrasound examination of a certain tumour weight (in grams)
produced the following results.

Existing Treatment 15.5 5 8.5 10.6 12.5 6.5 8.4 10.5 8 10
New Treatment 14 5.7 9 11.5 10 7 7.5 8 9.9 10.5

To answer the following questions, report the numerical computations to four decimal
places.

(a) Test whether there is a difference in the two treatments at 5% level of significance. [10]

(b) Find a 90% confidence interval for the mean difference in the treatments. [5]

(c) What would be the conclusion in (a) if we had wrongly ignored the pairing? [10]

End of Paper.
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