Coursework 3

1. Suppose X and Y have joint density function

$$f_{X,Y}(x,y) = \begin{cases} 2e^{-x-y} & \text{if } x > y > 0\\ 0 & \text{otherwise.} \end{cases}$$

Calculate the conditional density function $f_{Y|X=x}(y)$. In lectures we calculated the $f_{X|Y=y}$.

- 2. Suppose that X, Y, Z are random variables. If $a \in \mathbb{R}$, prove that
 - a) Cov(aX, Y) = Cov(X, aY) = a Cov(X, Y)
 - b) Cov(a + X, Y) = Cov(X, a + Y) = Cov(X, Y)
 - c) Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)
- 3. Suppose we throw a dice. Define the events A to be "the outcome is an odd number", B to be "the outcome is 2", C to be "the outcome is either a 5 or a 6".
 - a) What is the sample space Ω ?
 - b) Are the events A and B independent?
 - c) Are the events A and C independent?
 - d) Are the events A, B and C independent?
- 4. Suppose that X, Y are discrete, independent random variables. You are reminded that this means that for any x, y from the range of X and Y

$$P(X = x, Y = y) = P(X = x) \times P(Y = y).$$

Find $E(XY \mid Y = y)$.

5. Suppose X and Y have joint density function

$$f_{X,Y}(x,y) = \begin{cases} e^{-x-y} & \text{if } x > 0 \text{ and } y > 0\\ 0 & \text{otherwise} \end{cases}$$

Find whether X and Y are independent.