## MTH5129 Probability \& Statistics II

## Coursework 3

1. Suppose $X$ and $Y$ have joint density function

$$
f_{X, Y}(x, y)= \begin{cases}2 e^{-x-y} & \text { if } x>y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate the conditional density function $f_{Y \mid X=x}(y)$.
In lectures we calculated the $f_{X \mid Y=y}$.
2. Suppose that $X, Y, Z$ are random variables. If $a \in \mathbb{R}$, prove that
a) $\operatorname{Cov}(\mathrm{aX}, \mathrm{Y})=\operatorname{Cov}(\mathrm{X}, \mathrm{aY})=\mathrm{a} \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$
b) $\operatorname{Cov}(\mathrm{a}+\mathrm{X}, \mathrm{Y})=\operatorname{Cov}(\mathrm{X}, \mathrm{a}+\mathrm{Y})=\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$
c) $\operatorname{Cov}(\mathrm{X}, \mathrm{Y}+\mathrm{Z})=\operatorname{Cov}(\mathrm{X}, \mathrm{Y})+\operatorname{Cov}(\mathrm{X}, \mathrm{Z})$
3. Suppose we throw a dice. Define the events $A$ to be "the outcome is an odd number", $B$ to be "the outcome is 2 ", $C$ to be "the outcome is either a 5 or a 6 ".
a) What is the sample space $\Omega$ ?
b) Are the events $A$ and $B$ independent?
c) Are the events $A$ and $C$ independent?
d) Are the events $A, B$ and $C$ independent?
4. Suppose that $X, Y$ are discrete, independent random variables. You are reminded that this means that for any $x, y$ from the range of $X$ and $Y$

$$
P(X=x, Y=y)=P(X=x) \times P(Y=y)
$$

Find $E(X Y \mid Y=y)$.
5. Suppose $X$ and $Y$ have joint density function

$$
f_{X, Y}(x, y)= \begin{cases}e^{-x-y} & \text { if } x>0 \text { and } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find whether $X$ and $Y$ are independent.

