MTH5129 Probability \& Statistics II

Coursework 5

1. Let X have the probability density function

$$
f_{X}(x)= \begin{cases}4 x^{3}, & \text { for } 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the probability density function of $Y=2 X-1$ using the transformation of random variables method.
2. Suppose that X_{1} and X_{2} have joint probability density function

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}8 x_{1} x_{2}, & 0<x_{1}<x_{2}<1 \\ 0, & \text { otherwise }\end{cases}
$$

What is the probability density function of $Y_{1}=X_{1} / X_{2}$?
Hint: Define an additional variable, e.g. $Y_{2}=X_{2}$.
3. Suppose X has a normal distribution, $N\left(\mu, \sigma^{2}\right)$, find the moment generating function of X and then deduce its mean and variance.
4. Let X be a $\operatorname{Bin}(n, p)$ random variable.
(a) Find the moment generating function of X.
(b) Find the expectation of X.
(c) Find the variance of X.
5. Suppose Y_{1}, \ldots, Y_{n} are independent, normally distributed with mean $E\left[Y_{i}\right]=$ μ_{i} and variance $\operatorname{Var}\left[\mathrm{Y}_{\mathrm{i}}\right]=\sigma_{\mathrm{i}}^{2}$. Prove that the sum

$$
U=\sum_{i=1}^{n}\left(\frac{Y_{i}-\mu_{i}}{\sigma_{i}}\right)^{2} \quad \text { has a } \chi^{2}(n) \text { distribution. }
$$

6. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables with cumulant generating functions $K_{X_{i}}(t), i=1, \ldots, n$. Let $Y=\sum_{i=1}^{n} X_{i}$ and find the cumulant generating function $K_{Y}(t)$ in terms of the $K_{X_{i}}(t), i=1, \ldots, n$.
7. Suppose that X is a non-negative random variable with mean μ. Prove that the median is at most 2μ. (The median is a value m with $P(X \geq m) \geq 1 / 2$ and $P(X \leq m) \geq 1 / 2$: i.e. it is the "middle value".)
8. Suppose that I toss a fair coin 100 times. Prove that the probability I get more than or equal to 60 heads or less than or equal to 40 heads is at most $1 / 4$.
