Probability and Statistics II formulae sheet

Probability

Distributions and related moment generating functions

1. $X \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p}): \quad \mathrm{P}(\mathrm{X}=\mathrm{k})=\binom{\mathrm{n}}{\mathrm{k}} \mathrm{p}^{\mathrm{k}} \mathrm{q}^{\mathrm{n}-\mathrm{k}}, 0 \leq \mathrm{k} \leq \mathrm{n}$, where $q=1-p . M_{X}(t)=\left(p e^{t}+q\right)^{n}$.
2. $X \sim \operatorname{Geometric}(\mathrm{p}): ~ \mathrm{P}(\mathrm{X}=\mathrm{k})=\mathrm{qp}^{\mathrm{k}-1}, \mathrm{k} \geq 1 . M_{X}(t)=\frac{p}{e^{-t}-q}$, where $q=1-p$.
3. $X \sim \operatorname{Poisson}(\lambda): ~ \mathrm{P}(\mathrm{X}=\mathrm{k})=\frac{\mathrm{e}^{-\lambda} \lambda^{\mathrm{k}}}{\mathrm{k}!}, \mathrm{k} \geq 0 . M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}$.
4. $X \sim \mathrm{Ga}(\alpha, \beta), \alpha>0, \beta>0$, if

$$
f_{X}(x)= \begin{cases}\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

where $\Gamma(\alpha)$ is the Gamma function, which is given by $\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$.
$M_{X}(t)=\frac{\beta^{\alpha}}{(\beta-t)^{\alpha}}$
Two particular cases of the Gamma distribution.
(a) $X \sim \operatorname{Exp}(\lambda)$ if $f_{X}(x)=\lambda e^{-\lambda x}$ if $x>0$ and $f_{X}(x)=0$ if $x \leq 0$.
(b) $X \sim \chi^{2}(1)$ is equivalent to saying $X \sim \operatorname{Ga}\left(\frac{1}{2}, \frac{1}{2}\right)$.
5. $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ if $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} . M_{X}(t)=\exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right)$.

Two more distributions

1. Cauchy Distribution. X has Cauchy distribution with location parameter x_{0} and scale parameter γ and we write $X \sim \operatorname{Cauchy}\left(x_{0}, \gamma\right)$ if

$$
f_{X}(x)=\frac{1}{\pi \gamma}\left[\frac{\gamma^{2}}{\left(x-x_{0}\right)^{2}+\gamma^{2}}\right],
$$

2. (Student's) \mathbf{t} Distribution. X has t distribution with ν degrees of freedom, and we write $X \sim t_{\nu}$, if

$$
f_{X}(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi \nu} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

Expectations

1. If X is a random variable, $g: \mathbb{R} \mapsto \mathbb{R}$ is a function, and $Y=g(X)$ is a new random variable, then $\mathbb{E}(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d s$.
2. Similarly, if $Z=g(X, Y)$, where (X, Y) are random variables with pdf $f_{X, Y}(x, y)$ then

$$
\mathbb{E}(g(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y
$$

3. If $f_{X \mid Y=y}(x)$ is the pdf of X conditioned on $Y=y$, then
$\mathbb{E}(g(X) \mid Y=y)=\int_{-\infty}^{\infty} g(x) f_{X \mid Y=y}(x) d x$.

Transformation of random variables

1. If $Y=g(X)$, then $f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d g^{-1}(y)}{d y}\right|$
2. If $U=g_{1}(X, Y), V=g_{2}(X, Y)$ and the inverse transformation is given by $X=h_{1}(U, V), Y=$ $h_{2}(U, V)$, then

$$
f_{U, V}(u, v)= \begin{cases}f_{X, Y}\left(h_{1}(u, v), h_{2}(u, v)\right)|J|, & \text { for }(u, v) \in B \\ 0, & \text { otherwise }\end{cases}
$$

where B is the range of $(U, V), J=\left|\begin{array}{ll}\frac{\partial h_{1}}{\partial u} & \frac{\partial h_{2}}{\partial u} \\ \frac{\partial h_{1}}{\partial v} & \frac{\partial h_{2}}{\partial v}\end{array}\right|$.

Statistics

Sample mean

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

Sample variance as

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

T-distribution: let $W \sim N(0,1)$ and $V \sim \chi_{r}^{2}$ be independent

$$
T=\frac{W}{\sqrt{V / r}} \sim t_{r}
$$

Testing the mean when the variance is known

$$
\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \sim N(0,1)
$$

Test of hypothesis and confidence interval for the variance

$$
W=\frac{(n-1) S^{2}}{\sigma_{0}^{2}} \sim \chi_{n-1}^{2}
$$

Test for a normal mean when variance is unknown

$$
T=\frac{\left(\bar{X}-\mu_{0}\right) \sqrt{n}}{S} \sim t_{n-1}
$$

Hypothesis tests for a Poisson mean

$$
T=\frac{\bar{X}-\lambda_{0}}{\sqrt{\lambda_{0} / n}} \sim N(0,1)
$$

Goodness of fit tests

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

Test for the mean of two independent samples when the variance is known

$$
Z=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sigma \sqrt{1 / n_{1}+1 / n_{2}}} \sim N(0,1)
$$

Test for the mean of two independent samples when the variance is unknown

$$
T=\frac{\bar{X}-\bar{Y}}{S_{0} \sqrt{1 / n_{1}+1 / n_{2}}} \sim t_{n_{1}+n_{2}-2}
$$

F test for comparing two variances

$$
F=\frac{S_{1}^{2}}{S_{2}^{2}} \sim F_{n_{2}-1}^{n_{1}-1}
$$

An approximate test when variances are unequal

$$
T^{*}=\frac{\bar{X}-\bar{Y}}{\sqrt{S_{1}^{2} / n_{1}+S_{2}^{2} / n_{2}}} \approx t_{\left.\frac{\left(s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}\right)^{2}}{\left(\frac{1}{4} / / / 1\right.} \frac{n_{1}^{2}}{n_{1}-1}+\frac{s_{2}^{2} / n_{2}^{2}}{n_{2}-1}\right)}
$$

Matched pairs t-test

$$
T=\frac{\bar{d} \sqrt{n}}{s_{d}} \sim t_{n-1}
$$

Test of two proportions

$$
Z=\frac{\hat{p_{1}}-\hat{p_{2}}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \sim N(0,1)
$$

Comparing two correlation coefficients

$$
Z^{\prime}=\frac{1}{2} \ln \left[\frac{1+r}{1-r}\right] \approx \operatorname{Normal}\left(\frac{1}{2} \ln \left[\frac{1+\rho}{1-\rho}\right], 1 /(n-3)\right)
$$

