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Week 1

Discrete random variables

A discrete random variable X has the following properties:

• X can assume any value x from a set of discrete values with a certain probability.

• The discrete set of values can be finite or countably infinite.

• The probability that X takes the particular value x is denoted by P (X = x).
The collection of the probabilities of all possible values x is called the probability
distribution of X.

• The function pX(x) = P (X = x) is called the probability mass function (pmf) of
X.

Properties of probability mass functions

The pmf pX has the following important two properties:

(i). If X takes discrete values from the set D, then
∑

x∈D pX(x) = 1.

(ii). pX(x) ≥ 0 for any x ∈ D.

For any S ⊆ D, we also have P (X ∈ S) =
∑

x∈S pX(x)

Expectation & Variance

Definition. The expectation of a discrete random variable X is defined by

E[X] :=
∑
x

xP (X = x) , if
∑
x

|x|P (X = x) <∞ ,

where the sum is taken over all possible values of the random variable X.

Some of the other terms for “expectation of X” used in the mathematical literature
(and in these notes) are “mean value of X”, just “mean”, “first moment of X”, or in
rough terms “average value of X”.

Theorem 1. Let X be a discrete random variable. Consider a new random variable
Y = g(X), where g is a function g : R→ R.
If
∑

x |g(x)|P (X = x) <∞, then

E(Y ) = E[g(X)] =
∑
x

g(x)P (X = x), (1)

where the sum is taken over all possible values of the random variable X.

Remark. By the definition of the expectation, E(Y ) =
∑

y yP (Y = y). Formula (1)
allows one to compute E(Y ) without first computing the probabilities P (Y = y).

Definition. The variance of random variable X is defined by

Var(X) := E[(X − µ)2], where µ = E[X] is the expected value of X.

Exercise. Prove that Var(X) := E(X2)− µ2.
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Continuous random variables

A continuous random variable X has the following properties:

• X can assume any value x from a continuum of values.

• The set of values is infinite (since X can assume any real number from a subset of
R).

Definition. A random variable X is continuous if there is a function fX such that for
all intervals [a, b], we have

P (X ∈ [a, b]) =

∫ b

a

fX(x)dx.

We call the function fX the probability density function of X (or pdf of X).

Properties of probability density functions

The probability density function fX has the following important two properties:

(i).

∫ ∞
−∞

fX(x) dx = 1.

(ii). fX(x) ≥ 0 for all x.

Cumulative distribution functions

Definition. The cumulative distribution function FX(x) of a random variable X is de-
fined by

FX(x) := P (X ≤ x) =

∫ x

−∞
fX(t)dt.

Recall (from calculus) that this formula can be differentiated at all points for which
the probability density function is continuous. Hence for these points

fX(x) =
dFX(x)

dx
.

Exercise. Show that FX(x) is a monotone increasing function of x with FX(−∞) = 0
and FX(∞) = 1.

Expectation

Definition. Let X be a continuous random variable with probability density function
fX(x). If

∫∞
−∞ |x|fX(x)dx <∞, then the expectation of X is defined by

E[X] =

∫ ∞
−∞

xfX(x)dx.

Theorem 2. Let X be a continuous random variable with probability density function
fX(x) and Y = g(X) be a new random variable, where g : R 7→ R is a function. If∫∞
−∞ |g(x)|fX(x)dx <∞, then

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx. (2)

Remark. By the definition of the expectation, E(Y ) =
∫∞
−∞ yfY (y)dy. Formula (2) allows

one to compute E(Y ) without first computing the probabilities fY (y).
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1 Conditional Probability

This section will start as a small revision on events and then will cover new material.

1.1 Conditional Probability of Events (Revision)

Definition. Suppose A and B are events and that P (B) > 0. The conditional probability
of A given B is defined by

P (A |B)
def
=
P (A ∩B)

P (B)
.

Remark. The condition that P (B) > 0 is needed: the definition does not make sense
without this. Conditioning on events which have probability zero is a common way of
“proving” false results!

There are two key reasons we care about conditional probability:
– we want to know the conditional probability itself,
– we use it as a tool for calculating actual “unconditional” probabilities.

Typically, when doing the former, we either calculate directly the conditional proba-
bility from the definition, or we use the Bayes Theorem (see Introduction to Probability).
To do the latter, the following theorem (see Introduction to Probability) is very useful.
Before stating it we recall the following definition.

Definition. A partition of a space of elementary outcomes Ω is a collection of events
B1, B2, B3, . . . , Bn which are pairwise disjoint and whose union is the whole set Ω.
In other words, B1, B2, B3, . . . , Bn form a partition if:
(i) Bi ∩Bj = ∅ for all i 6= j,
(ii) ∪nj=1Bj = Ω.

The first condition says that no two (or more) of the events can occur together. The
second condition says that at exactly one event one must occur.

Theorem 3 (Theorem of Total Probability). Suppose that A is an event, that B1, B2, . . . , Bn

form a partition and that P (Bi) > 0 for all i = 1, . . . , n. Then

P (A) =
n∑
i=1

P (A |Bi)P (Bi).

Proof. Can be found in Introduction to Probability.

Remark. This theorem is useful when the conditional probabilities are easy to calculate.

Example. Suppose that we roll two fair dice. What is the probability the product is even?

Answer. Let A be the event that the product is even.
Let B1 be the event that the first die is odd.
Let B2 = Bc

1 be the event the first die is even.
These events are a partition so we can use the Theorem of Total Probability.
First we calculate P (B1) and P (B2). Obviously these are both 1/2.
Now what is P (A |B1)? Since the first die is odd the product is even if and only if

the second die is even, which has probability 1/2. Thus P (A |B1) = 1/2.
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Next P (A |B2). Since the first die is even the product is always even whatever the
second die is. Hence P (A |B2) = 1.

Putting these together we see that

P (A) = P (A |B1)P (B1) + P (A |B2)P (B2) =
1

2
· 1

2
+ 1 · 1

2
=

3

4
.

Example. Alice and Bob play the following game. They roll a fair dice. If it comes up
1 or 2 Alice wins, if it comes up 6 Bob wins, if it comes up 3,4,5 they play again. What
is the probability Alice wins?

Answer. Let A be the event Alice wins. Let B1 be the event the first roll is a 1 or 2,
B2 be the event that the first roll is a 6 and B3 the event that the first roll is a 3,4 or 5.
Obviously B1, B2, B3 form a partition, and P (B1) = 1/3, P (B2) = 1/6, and P (B3) = 1/2.

If B1 occurs, then Alice wins: i.e., P (A |B1) = 1.
If B2 occurs then Bob wins (so Alice does not): i.e., P (A |B2) = 0.
If B3 occurs, then we observe that this is just as if the first roll never happened: i.e.,

P (A |B3) = P (A).
We apply the Theorem of Total Probability:

P (A) = P (A |B1)P (B1) + P (A |B2)P (B2) + P (A |B3)P (B3) = 1 · 1

3
+ 0 · 1

6
+ P (A) · 1

2
.

By rearranging we see that P (A) = 2/3.

1.2 Conditional distribution of Discrete random variables

Suppose that X is a discrete random variable and that B is an event with P (B) > 0.
Just as with conditional probability we can ask what do we know about X if we are told
that B occurs. Indeed, we can define a new random variable Y = X |B where

P (Y = x)
def
= P (X = x |B) =

P ({X = x} ∩B)

P (B)
. (3)

Example. We toss a fair coin twice. What is the distribution of the number of heads
given that the first toss is a head? What is the distribution of the number of heads given
that the first toss is tail?

Answer. Let X count the number of heads, let B1 be the event that the first toss is a
head and B2 be the event that the first toss is a tail. Then P (B1) = 1

2
and P (B2) = 1

2
.

The distribution of X |B1 is

P (X = 0 |B1) = 0 P (X = 1 |B1) = 1/2 P (X = 2 |B1) = 1/2.

Similarly we compute the distribution of X |B2 as

P (X = 0 |B2) = 1/2 P (X = 1 |B2) = 1/2 P (X = 2 |B2) = 0
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Since X |B is a random variable we can talk about the expectation of X given B
which we write E(X |B): this is defined in the obvious way as

E(X |B) =
∑
x

xP (X = x |B). (4)

Example. In the previous example: what is the expected number of heads given that the
first toss is a head? What if the first toss is a tail?

Answer. Thus

E(X |B1) = 0 · 0 +
1

2
· 1 +

1

2
· 2 =

3

2
and we see that

E(X |B2) = 1/2.

In the same way, suppose that we have two random variables X and Y and that we
are told the value of Y . Then, for any value y of Y for which P (Y = y) > 0, we can
consider the conditional distribution of X|{Y = y} as above in (3) and its conditional
expectation as in (4), but this time the event B = {Y = y}:

E (X|Y = y) =
∑
x

xP (X = x |Y = y) =
∑
x

x
P (X = x, Y = y)

P (Y = y)
. (5)

We will now look at a theorem, similar to the theorem of total probability, but now
for expectations.

Theorem 4 (Theorem of Total Probability for Expectation). Suppose that X is a random
variable and that B1, ..., Bn is a partition with P (Bi) > 0 for all i. Then

E(X) =
n∑
i=1

E(X |Bi)P (Bi)

Proof. By definition

E(X) =
∑
x

xP (X = x).

Since B1, ..., Bn is a partition (and P (Bi) > 0 for all i), the Theorem of Total Probability
implies that

P (X = x) =
n∑
i=1

P (X = x |Bi)P (Bi).

Hence

E(X) =
∑
x

xP (X = x)

=
∑
x

x

n∑
i=1

P (X = x |Bi)P (Bi)

=
n∑
i=1

(∑
x

xP (X = x |Bi)

)
P (Bi)

=
n∑
i=1

E(X |Bi)P (Bi).
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Example. Alice and Bob play the following game. They roll a fair dice. If it comes up
1 or 2 Alice wins, if it comes up 6 Bob wins, if it comes up 3,4,5 they play again. What
is the expected number of dice rolls until the game finishes?

Answer. Let X be the number of dice rolls until the game finishes, i.e. until either Alice
or Bob wins.

Let B1 be the event the first roll is a 1, 2 or 6 (Alice or Bob wins)
Let B2 be the event that the first roll is a 3, 4 or 5.
Obviously B1, B2 form a partition, and P (B1) = 1/2, P (B2) = 1/2.
If B1 occurs, then the game is finished after one roll, i.e., E[X |B1] = 1.
If B2 occurs then the game does not finish and it is just as if the first roll never

happened: i.e., E[X |B2] = 1 + E[X].
We apply the Theorem of Total Probability for Expectation:

E(X) = E(X |B1)P (B1) + E(X |B2)P (B2) = 1 · 1

2
+ (1 + E(X))

1

2
.

Solving this equation fo E(X), we see that

E(X) = 2.

2 Jointly distributed Continuous random variables

In many cases we are interested in more than one random variable at the same time. For
example, in weather we might be interested in temperature and pressure, or we might be
interested in the height and weight of people in a population.

When the two variables are “unrelated” (formally independent) then this is straight-
forward: we can deal with them individually!

However, in general

random variables are related and their joint behaviour is rather more complicated.

Let us consider the second example. If we take a random person we can view their
height and weight as two random variables; let H be the height in metres and W the
weight in kilograms. Note that we do not expect H and W to be independent: tall
people tend to be heavier.

We could ask questions such as

1. P (1.8 < H < 1.9 and 90 < W < 100)

2. P (1.5 < H < 1.6 and 90 < W < 100)

3. P (25H2 < W )

The first two of these seem reasonably natural questions the third may look unnatural
but it is actually asking what is the probability that a person’s BMI is over 25 (one
definition of being overweight).

One way of illustrating these probabilities is by plotting each persons height and
weight on a graph: the height on the X axis and the weight on the Y axis. Now the first
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question is asking for the probability that a person (when plotted) lies in the box with
sides given by H = 1.8, H = 1.9, W = 90 and W = 100. Similarly the second probability
is asking about the box given by H = 1.4, H = 1.5, W = 90 and W = 100. Finally the
third probability is asking for the probability that a person (when plotted) lies above the
curve with equation W = 25H2.

Exercise. Draw a picture and think about the above.

2.1 Joint Distributions

Definition. Suppose that X and Y are random variables. We say that X and Y are
jointly continuous if there exists a function fX,Y (x, y) such that, for all sets A ⊂ R2,

P ((X, Y ) ∈ A) =

∫ ∫
A

fX,Y (s, t) dt ds.

We call fX,Y the joint probability density function, or joint pdf.

The joint probability density function has properties which are similar to those of the
probability density function of one random variable:

(i).

∫ ∞
−∞

∫ ∞
−∞

fX,Y (s, t) dt ds = 1.

Proof. Obvious, since P (−∞ < X <∞ and −∞ < Y <∞) = 1.

(ii). fX,Y (s, t) ≥ 0 for all s and t.

(Otherwise, we get negative probabilities)

Example. Suppose that X and Y have joint probability density function given by

fX,Y (x, y) =

{
c if 0 < x < 1, 0 < y < 1,

0 otherwise.

Find the value of c.

Solution. If 0 < x < 1 then, as we have done before, we need to split the integration into
ranges so we can deal with the “case”-definition of the joint probability density function.

1 =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) dxdy

=

∫ ∞
−∞

∫ 0

−∞
fX,Y (x, y) dxdy + ...+

∫ 1

0

∫ 1

0

fX,Y (x, y) dxdy + ...+

∫ ∞
−∞

∫ ∞
1

fX,Y (x, y) dxdy

= 0 +

∫ 1

0

∫ 1

0

c dxdy + 0

=

∫ 1

0

[
cx
]1
x=0

dy =

∫ 1

0

cdy =
[
cy
]1
y=0

= c.

Therefore, we have c = 1.
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Week 2

Example. Suppose that X and Y have joint probability density function given by

fX,Y (s, t) =

{
e−s−t, if s, t ≥ 0,

0, otherwise.

Find:

(i). P (3 < X < 4 and 2 < Y < 5)

(ii). P (−1 < X < 3 and 2 < Y < 5)

(iii). P (Y > X > 0).

Answer. (i). By definition

P (3 < X < 4 and 2 < Y < 5) =

∫ 4

3

∫ 5

2

fX,Y (s, t) dt ds

Now, for all 3 < s < 4 and 2 < t < 5, we have fX,Y (s, t) = e−s−t (i.e. we are in the first
case of the definition of fX,Y ). Hence

P (3 < X < 4 and 2 < Y < 5) =

∫ 4

3

∫ 5

2

fX,Y (s, t) dt ds

=

∫ 4

3

(∫ 5

2

e−s−t dt

)
ds

=

∫ 4

3

[
− e−s−t

]5
t=2

ds

=

∫ 4

3

(e−s−2 − e−s−5) ds

=
[
− e−s−2 + e−s−5

]4
s=3

= e−5 − e−6 − e−8 + e−9 = 0.004 = 0.4%.

(ii). For the second probability, again by definition

P (−1 < X < 3 and 2 < Y < 5) =

∫ 3

−1

∫ 5

2

fX,Y (s, t) dt ds

Now, this range covers part of both cases in the definition of fX,Y . Thus, we split the
range into pieces each of which only contains parts from one of the cases of the definition.

P (−1 < X < 3 and 2 < Y < 5) =

∫ 3

−1

∫ 5

2

fX,Y (s, t) dt ds

=

∫ 0

−1

∫ 5

2

fX,Y (s, t) dt ds+

∫ 3

0

∫ 5

2

fX,Y (s, t) dt ds

Throughout the second integral, we have s > 0 so fX,Y (s, t) = e−s−t (we are in the first
case of the definition of fX,Y ).
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Similarly, throughout the first integral, we have s < 0 so fX,Y (s, t) = 0 (we are in the
second case of the definition of fX,Y ).

Hence∫ 0

−1

∫ 5

2

fX,Y (s, t) dt ds+

∫ 3

0

∫ 5

2

fX,Y (s, t) dt ds =

∫ 0

−1

∫ 5

2

0 dt ds+

∫ 3

0

∫ 5

2

e−s−t dt ds

and both of these are integrals we know how to calculate. The difficult step was to split
in the appropriate “cases”, then the rest of calculations are simple.∫ 3

0

∫ 5

2

fX,Y (s, t) dt ds =

∫ 3

0

(∫ 5

2

e−s−t dt

)
ds

=

∫ 3

0

[
− e−s−t

]5
t=2

ds

=

∫ 3

0

(e−s−2 − e−s−5) ds

=
[
− e−s−2 + e−s−5

]3
s=0

= e−2 − e−5 − e−5 + e−8 = e−2 − 2e−5 + e−8 = 0.122 = 12.2%

(iii). Finally,

P (Y > X > 0) =

∫ ∞
0

∫ t

0

fX,Y (s, t) ds dt =

∫ ∞
0

∫ ∞
s

fX,Y (s, t) dt ds

Note we can do the integrals in either order but we do need to make sure we parameterise
them correctly (see Calculus II notes).

Note that throughout the range of integration t > s > 0 so fX,Y (s, t) = e−s−t. Thus

P (Y > X > 0) =

∫ ∞
0

∫ ∞
s

fX,Y (s, t) dt ds

=

∫ ∞
0

∫ ∞
s

e−s−t dt ds

=

∫ ∞
0

[
− e−s−t

]∞
t=s

ds

=

∫ ∞
0

e−2s ds

=
[
− 1

2
e−2s

]∞
s=0

=
1

2
= 50%.

Remark. Notice that, if we had done the first expression of the double integral, we’d have
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gotten the same answer:

P (Y > X > 0) =

∫ ∞
0

∫ t

0

fX,Y (s, t) ds dt

=

∫ ∞
0

∫ t

0

e−s−t ds dt

=

∫ ∞
0

[
− e−s−t

]t
s=0

dt

=

∫ ∞
0

(−e−2t + e−t) dt

=
[1

2
e−2t − e−t

]∞
t=0

=
1

2
= 50%.

2.2 Joint cumulative distribution function

We can also define a joint cumulative distribution function (or joint cdf) of two random
variable (X, Y ) analogously with the cumulative distribution function of one random
variable (defined before).

Definition. Suppose X and Y are random variables. Then the joint distribution function
FX,Y is defined by

FX,Y (x, y) = P (X ≤ x, Y ≤ y).

If X and Y are jointly continuous with joint probability density function fX,Y then

FX,Y (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t) dt ds

Remark. It is easy to see that

FX,Y (∞,∞) = P (X <∞ and Y <∞) = 1

and
FX,Y (−∞,−∞) = P (X < −∞ and Y < −∞) = 0

Also, the function FX,Y is increasing in the sense that whenever x1 ≤ x2 and y1 ≤ y2
then

FX,Y (x1, y1) ≤ FX,Y (x2, y2).

Just as in the one random variable pdf/cdf case, we can recover the joint density
function from the joint distribution function.

Theorem 5. Suppose X and Y are jointly continuous random variables with joint cu-
mulative distribution function FX,Y . Then the joint probability density function fX,Y is
given by

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y).
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Proof. By definition

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t)dtds.

Hence

∂2

∂x∂y
FX,Y (x, y) =

∂2

∂x∂y

∫ x

−∞

∫ y

−∞
fX,Y (s, t)dtds

=
d

dy

∫ y

−∞
fX,Y (x, t)dt (by the fundamental theorem of calculus)

= fX,Y (x, y) (by the fundamental theorem of calculus)

as claimed.

2.3 Marginal distributions

In this section, we aim to find fX(x) and fY (y) given that we know fX,Y . The following
property of the joint cdf allows one to find FX(x) and FY (y) if FX,Y is known.

Lemma 6. Let (X, Y ) be two random variables with joint cumulative distribution function
FX,Y , and FX , FY be the cumulative distribution functions of X and Y respectively. Then

FX(x) = FX,Y (x,∞), FY (y) = FX,Y (∞, y).

Proof. Note that the events {X ≤ x} = {X ≤ x, Y ≤ ∞}. Indeed, the left hand side
of this equality is the event that “X is no larger than x” and the right hand side is the
event “X is no larger than x and Y is arbitrary” which is the same thing. Hence

FX(x) = P (X ≤ x) = P (X ≤ x, Y <∞) = FX,Y (x,∞).

The second formula is proved similarly.

Exercise. Prove the second formula in the above lemma.

Theorem 7. Suppose X and Y have joint probability density function fX,Y . Then X
and Y are continuous random variables. The density functions fX of X is given by

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy.

and similarly

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx.

The functions fX and fY are called the marginal probability density functions or
marginal pdfs.

Proof. We present two different, but equivalent, proofs to this theorem. The first one
was covered in the lectures, the second one we only present here. Of course, you can use
any one you prefer.

Proof (I). By lemma 6
FX(x) = FX,Y (x,∞)
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and by the definition of the joint probability density function

FX(x) = FX,Y (x,∞) = P (X ≤ x, Y <∞) =

∫ x

−∞

∫ ∞
−∞

fX,Y (s, t) dt ds =∫ x

−∞

(∫ ∞
−∞

fX,Y (s, t) dt

)
ds

Hence

fX(x) =
dFX(x)

dx
=

d

dx

∫ x

−∞

(∫ ∞
−∞

fX,Y (s, t) dt

)
ds =

∫ ∞
−∞

fX,Y (x, t) dt,

where the last equality follows by the fundamental theorem of calculus.

Proof (II). Recall that a function f(x) is a probability density function of a random
variable X iff for any (a, b)

P (X ∈ (a, b)) =

∫ b

a

f(x)dx.

Note that the events {X ∈ (a, b)} and {X ∈ (a, b), Y ∈ (−∞,∞)} are identical and
hence, by the definition of fX,Y , we have∫ b

a

f(x)dx = P (X ∈ (a, b))

= P (X ∈ (a, b), Y ∈ (−∞,∞)) =

∫ b

a

(∫ ∞
−∞

fX,Y (x, y)dy

)
dx,

which implies f(x) =
∫∞
−∞ fX,Y (x, y)dy. Hence the proof of the theorem.

Exercise. Prove the second formula in the above Theorem.

Example. Suppose that X and Y have joint probability density function given by

fX,Y (x, y) =

{
c if 0 < x < 1, 0 < y < 1,

0 otherwise.

Find the marginal probability density function fX of X.

Solution. The marginal density fX is given by

fX(x) =

∫ ∞
−∞

fX,Y (x, t) dt.

Now if x ≤ 0 or x ≥ 1 then, regardless of t, fX,Y (x, t) = 0 and so, in this case, the
integral is zero. I.e., if x ≤ 0 or x ≥ 1 then fX(x) = 0.

If 0 < x < 1 then, as we have done before, we need to split the integration into ranges
so we can deal with the “case”-definition of the joint probability density function.

fX(x) =

∫ ∞
−∞

fX,Y (x, t) dt

=

∫ 0

−∞
fX,Y (x, t) dt+

∫ 1

0

fX,Y (x, t) dt+

∫ ∞
1

fX,Y (x, t) dt

= 0 +

∫ 1

0

c dt+ 0 =
[
ct
]1
t=0

= c.

13



Thus the marginal density fX is given by

fX(x) =

{
c if 0 < x < 1

0 otherwise

To find c, we use 1 =
∫∞
−∞ fX(x) dx =

∫ 1

0
cdx = c. Therefore,

fX(x) =

{
1 if 0 < x < 1

0 otherwise

(We recognize this as the probability density function of a Uniform distribution but that
is not part of the question.)

Example. Suppose that X and Y have joint probability density function given by

fX,Y (x, y) =

{
e−x−y if x, y ≥ 0

0 otherwise

Find the marginal density fX .

Solution. The marginal density fX is given by

fX(x) =

∫ ∞
−∞

fX,Y (x, t) dt.

Now if x < 0 then, regardless of t, fX,Y (x, t) = 0 and so, in this case, the integral is
zero. I.e., if x < 0 then fX(x) = 0.

If x > 0 then, as we have done before, we need to split the integration into ranges so
we can deal with the “case”-definition of the joint probability density function.

fX(x) =

∫ ∞
−∞

fX,Y (x, t) dt

=

∫ 0

−∞
fX,Y (x, t) dt+

∫ ∞
0

fX,Y (x, t) dt

= 0 +

∫ ∞
0

e−x−t dt

=
[
− e−x−t

]∞
t=0

= e−x.

Thus the marginal density fX is given by

fX(x) =

{
e−x if x ≥ 0

0 otherwise

(We recognize this as the probability density function of the Exp(1) random variable but
that is not part of the question.)
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Example. Suppose that X and Y have joint probability density function given by

fX,Y (x, y) =

{
2e−x−y if x ≥ y ≥ 0

0 otherwise

Find the marginal density fY .

Solution. The marginal density fY is given by

fY (y) =

∫ ∞
−∞

fX,Y (s, y) ds.

Now if y < 0 then, regardless of s, fX,Y (s, y) = 0 and so, in this case, the integral is
zero. I.e., if y < 0 then fY (y) = 0.

If y > 0 then, as before, we need to split the integration into ranges so we can deal
with the “case”-definition of the joint probability density function.

fY (y) =

∫ ∞
−∞

fX,Y (s, y) ds

=

∫ y

−∞
fX,Y (s, y) ds+

∫ ∞
y

fX,Y (s, y) ds (true for any function fX,Y )

=

∫ y

−∞
0 ds+

∫ ∞
y

2e−s−y ds (see below for reason)

= 0 +
[
− 2e−s−y

]∞
s=y

= 2e−2y.

The third line follows because:

• in the second integral s ranges from y to ∞: thus s > y > 0 and so fX,Y (s, y) =
2e−s−y.

• in the first integral s ranges from −∞ to y: thus s < y and so fX,Y (s, y) = 0 (note
it does not matter if s < 0 or s > 0: whenever s < y we are in the second case of
the definition of fX,Y ).

Thus the marginal density fX is given by

fY (y) =

{
2e−2y if y ≥ 0

0 otherwise

(We recognize this as the probability density function of an Exp(2) random variable but
that is not part of the question.)

Exercise. Find the marginal density fX in this second example.

Statistical remarks

(1). Inferring the marginal density of one random variable X from a joint probability
density function of a couple (X, Y ) is a fundamental tool used in Statistics.

(2). In this course, we will see this when testing a hypothesis. It is natural to need
to combine two (or more) random variables to obtain another one for the purpose
of the test. However when transforming the couple (U, V ) of random variables,
we obtain another couple (X, Y ) of random variables, hence to isolate the random
variable X (which is our aim), we need to obtain its marginal probability density
function.
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2.4 Expectation over a joint distribution, Covariance & Corre-
lation

Let (X, Y ) be two random variables with joint probability density function fX,Y and let
g(x, y) be a function of two variables taking real values. We can then consider a new
random variable g(X, Y ). We aim to find the expectation E (g(X, Y )).

In the sequel, the following important formula shall be used (no proof will be given).
If a function g(x, y) is such that

∫∞
−∞

∫∞
−∞ |g(x, y)|fX,Y (x, y)dxdy <∞ then

E (g(X, Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y)dxdy. (6)

Remark. This formula is an analogue of the equivalent one-dimensional case.

Remark. You are reminded that if G(x, y) is a “good” function then its double integral
can be computed as follows:∫ ∞

−∞

∫ ∞
−∞

G(x, y)dxdy =

∫ ∞
−∞

(∫ ∞
−∞

G(x, y)dx

)
dy

=

∫ ∞
−∞

(∫ ∞
−∞

G(x, y)dy

)
dx.

Important examples of expectations over joint distributions are the so-called raw
moment

E(XkY m)

and the so-called central moment

E[(X − µ1)
k(Y − µ2)

m)],

where µ1 = E(X) and µ2 = E(Y ).
Formula (6) can be used for finding such moments, e.g.

E[(X − µ1)
k(Y − µ2)

m] =

∫ ∞
−∞

∫ ∞
−∞

(x− µ1)
k(y − µ2)

mfX,Y (x, y)dxdy.

Definition. Covariance of two random variables X and Y is

Cov(X, Y ) = E [(X − E(X))(Y − E(Y ))] .

Definition. Correlation (or the coefficient of correlation) of two random variables X and
Y is

Corr(X, Y ) =
Cov(X,Y)√

Var(X)Var(Y)
.

A standard notation for correlation is ρ(X, Y ) ≡ Corr(X, Y ).

Remark. The covariance and even more so the correlation of two random variables is
commonly used as measures of their inter-dependence.

• If X and Y are independent, then Cov(X, Y ) = 0.

• Hence Independence implies that Covariance (and so Correlation) is zero.

• However it is not true that zero Correlation implies Independence (see next section).
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Week 3

Lemma 8. For any two random variables X and Y we have

Cov(X, Y ) = E(XY )− E(X)E(Y )

Proof 1. Denote E(X) = µ1 and E(Y ) = µ2. Then

Cov(X, Y ) = E [(X − E(X))(Y − E(Y ))]

= E[(X − µ1)(Y − µ2)]

= E[XY − µ1Y − µ2X + µ1µ2]

= E(XY )− E(µ1Y )− E(µ2X) + µ1µ2

= E(XY )− µ1E(Y )− µ2E(X) + µ1µ2

= E(XY )− µ1µ2 − µ2µ1 + µ1µ2 = E[XY ]− µ1µ2.

Proof 2. We prove this for any X and Y continuous random variables (Exercise. Prove
this for discrete random variables). Given that E(X) = µ1 and E(Y ) = µ2 are constants,
we have:

Cov(X, Y ) = E [(X − E(X))(Y − E(Y ))]

= E[(X − µ1)(Y − µ2)]

=

∫ ∞
−∞

∫ ∞
−∞

(x− µ1)(y − µ2)fX,Y (x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xyfX,Y (x, y)dxdy − µ2

∫ ∞
−∞

∫ ∞
−∞

xfX,Y (x, y)dxdy

− µ1

∫ ∞
−∞

∫ ∞
−∞

yfX,Y (x, y)dxdy + µ1µ2

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y)dxdy

Then by switching the order of integration as follows, we get

Cov(X, Y ) = E(XY )− µ2

∫ ∞
−∞

x

(∫ ∞
−∞

fX,Y (x, y)dy

)
dx

− µ1

∫ ∞
−∞

y

(∫ ∞
−∞

fX,Y (x, y)dx

)
dy + µ1µ2

= E(XY )− E(Y )

∫ ∞
−∞

xfX(x)dx− E(X)

∫ ∞
−∞

yfY (y)dy + E(X)E(Y )

= E(XY )− E(X)E(Y )

Exercise. (Check first-year probability & statistics notes) Suppose that X, Y, Z are ran-
dom variables. If a ∈ R, prove that

(i).
Cov(aX,Y) = Cov(X, aY) = a Cov(X,Y)

(ii).
Cov(a + X,Y) = Cov(X, a + Y) = Cov(X,Y)

(iii).
Cov(X,Y + Z) = Cov(X,Y) + Cov(X,Z)
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2.5 Conditional distribution of Continuous random variables

We would like to do something like we did in the discrete case and define the conditional
distribution. There, we defined the random variable X|{Y = y}, but this is not possible
for continuous random variables, since P (Y = y) = 0 for any y. However, we can get
round this by conditioning on Y being “very close” to y, instead of Y being equal to y.
If we do this sensibly we arrive at the following definition.

Definition. Suppose X and Y are jointly continuous random variables with joint prob-
ability density function fX,Y . Then the conditional probability density function of X
given Y = y is

fX|Y=y(x) =
fX,Y (x, y)

fY (y)

whenever fY (y) 6= 0. (As usual fY is the marginal probability density function of Y .)

Remark. Similarly, fY |X=x(y) =
fX,Y (x,y)

fX(x)
whenever fX(x) 6= 0.

Example. Suppose that X and Y have joint probability density function given by

fX,Y (x, y) =

{
e−x−y if x, y ≥ 0

0 otherwise

Find the conditional probability density function fX|Y=y.

Answer. Firstly, we obtain the marginal density fY is given by

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx.

Now if y < 0, then fX,Y (x, y) = 0 and so, in this case, the integral is zero. So, if y < 0
then fY (y) = 0.

If y > 0 then, as we have done before, we need to split the integration into ranges so
we can deal with the “case”-definition of the joint probability density function.

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx

=

∫ 0

−∞
fX,Y (x, y) dx+

∫ ∞
0

fX,Y (x, y) dx

= 0 +

∫ ∞
0

e−x−y dx

=
[
− e−x−y

]∞
x=0

= e−y.

By definition, if y > 0 , we have

fX|Y=y(x) =
fX,Y (x, y)

fY (y)

and is not defined for y ≤ 0 (as fY (y) would be zero).
If x < 0 then fX,Y (x, y) = 0 so fX|Y=y(x) = 0.
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Finally, if x > 0 then

fX|Y=y(x) =
e−x−y

fY (y)
=
e−x−y

e−y
= e−x

Hence, for any given y > 0, we have

fX|Y=y(x) =

{
e−x if x > 0

0 otherwise.

Example. Suppose X and Y have joint probability density function

fX,Y (x, y) =

{
2e−x−y if x > y > 0

0 otherwise

Find the conditional probability density function fX|Y=y.

Solution. Let us first compute fY (y). As usual,

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx

and we see that fY (y) = 0 if y ≤ 0. If y > 0 then

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ ∞
y

2e−x−y dx = −2e−x−y
∣∣∣x=∞
x=y

= 2e−2y.

By definition, if y > 0 , we have

fX|Y=y(x) =
fX,Y (x, y)

fY (y)

and is not defined for y ≤ 0 (as fY (y) would be zero).
If x < y then fX,Y (x, y) = 0 so fX|Y=y(x) = 0.
Finally, if x > y > 0 then

fX|Y=y(x) =
2e−x−y

fY (y)
=

2e−x−y

2e−2y
= e−x+y

Hence, for any given y > 0, we have

fX|Y=y(x) =

{
e−x+y if x > y

0 otherwise.

Recall that if X is a random variable with probability density function fX then

E(X) =

∫ ∞
−∞

sfX(s) ds.

More generally, if g is any function then

E(g(X)) =

∫ ∞
−∞

g(s)fX(s) ds.
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Note, in both cases, we can ignore ranges of s where the density is zero. So, for example,
if fX is only non-zero between 0 and 1 then we can replace the range of integration above
by the range 0 to 1.

Having just defined the probability density function of X|{Y = y}, whenever fY (y) 6=
0, we can use the following formula to find the conditional expectation of X given that
Y = y, for all y such that fY (y) 6= 0:

E(X|Y = y) =

∫ ∞
−∞

s fX|Y=y(s) ds =

∫ ∞
−∞

s
fX,Y (s, y)

fY (y)
ds.

Example (previous example continued...). Suppose X and Y have joint probability den-
sity function

fX,Y (x, y) =

{
2e−x−y if x > y > 0

0 otherwise

What is the expected value of X given that Y takes the value 5?

Answer. We use the conditional probability density function of X given Y = 5, namely
we substitute y = 5. Hence, we have

fX|Y=5(x) =

{
e5−x if x > 5

0 otherwise.

This implies that

E(X|Y = 5) =

∫ ∞
−∞

x fX|Y=5(x) dx =

∫ ∞
5

x e5−x dx

Using integration by parts we get

E(X|Y = 5) =
[
−x e5−x

]∞
x=5

+

∫ ∞
5

e5−x dx = 0 + 5−
[
e5−x

]∞
x=5

= 5− 0 + 1 = 6.
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3 Independence

3.1 Independence of events (Revision)

Definition. Two events A, B ∈ F are independent if P (A ∩ B) = P (A)P (B). More
generally, events A1, A2, ..., An are mutually independent if for any 1 ≤ i1 < i2 < ...im ≤ n

P (Ai1 ∩ Ai2 ∩ ... ∩ Aim) = P (Ai1)P (Ai2) . . . P (Aim).

Exercise.
(a). Prove that A ∩Bc = A \ (A ∩B).
(b). Prove that if A and B are independent events then A and Bc are independent.

3.2 Independence of random variables

We start by defining what we mean by the independence of two random variables.

Definition. Two random variables X and Y are independent if, for any intervals (a, b)
and (c, d), the events

{X ∈ (a, b)} and {Y ∈ (c, d)}

are independent: i.e.,

P (X ∈ (a, b) and Y ∈ (c, d)) = P (X ∈ (a, b))P (Y ∈ (c, d)) (7)

Remark. Another way to define independence is: X and Y are independent if, for any
measurable sets A and B, the events {X ∈ A} and {Y ∈ B} are independent. This may
look like a stronger requirement but in fact these definitions are equivalent. We shall not
prove this fact.

Theorem 9. Suppose that X and Y have joint density function fX,Y and marginal density
functions fX and fY . Then X and Y are independent if and only if

fX,Y (x, y) = fX(x)fY (y)

for all x and y.

Proof. Part I. Suppose fX,Y (s, t) = fX(s)fY (t) for all s, t. Then for any intervals (a, b), (c, d) ⊂
R we have

P (X ∈ (a, b) and Y ∈ (c, d)) =

∫ b

a

∫ d

c

fX,Y (s, t) ds dt

=

∫ b

a

∫ d

c

fX(s)fY (t) ds dt

=

∫ b

a

fX(s) ds×
∫ d

c

fY (t) dt

= P (X ∈ (a, b))P (Y ∈ (c, d))

Since this is true for all intervals (a, b) and (c, d) we see that X and Y are independent.
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Part II. We now have to show that (7) implies fX,Y (x, y) = fX(x)fY (y). So suppose
that for any (a, b) and (c, d) equation (7) holds. Take (a, b) = (−∞, x) and (c, d) =
(−∞, b). Then

P (X ∈ (−∞, x) and Y ∈ (−∞, y)) = P (X ∈ (−∞, x))× P (Y ∈ (−∞, y))

which is the same as

P (X < x, Y < y) = P (X < x)P (Y < y). (I)

The probabilities in the last formula are distribution functions and so we can re-write
the last line as

FX,Y (x, y) = FX(x)FY (y). (II)

But then

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y) =

∂2

∂x∂y
(FX(x)FY (y))

=
∂

∂x

(
∂

∂y
(FX(x)FY (y))

)
=

∂

∂x

(
FX(x)

dFY (y)

dy

)
=

dFX(x)

dx

dFY (y)

dy
= fX(x)fY (y).

Remark. Strictly speaking, (I) and (II) above are not the same thing. The reason for
that is that in general FX(x) = P (X ≤ x) 6= P (X < x) (and similarly for FX,Y (x, y),
FY (y)). However, in this theorem we deal with continuous random variables and therefore
FX(x) = P (X < x), etc.

Using Theorem 9, we also have the following result.

Corollary 10. If X and Y are independent then their joint probability density function
fX,Y (x, y) = fX(x)fY (y) so

fX|Y=y(x) =
fX,Y (x, y)

fY (y)
=
fX(x)fY (y)

fY (y)
= fX(x).

In other words the distribution of X does not depend on the value of Y .

Example. Suppose that X and Y have joint density function fX,Y given by

fX,Y (x, y) =

{
6e−2x−3y if x > 0 and y > 0

0 otherwise

Are the random variables X and Y independent?

Answer. Find the marginal densities fX and fY .
We know that the marginal density fX is given by

fX(x) =

∫ ∞
−∞

fX,Y (x, t) dt
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If x ≤ 0 then, fX,Y (x, y) = 0 (regardless of y; we are in the second case of the function
definition) so the integral, and thus the marginal density fX(x) = 0.

Now suppose x > 0. As usual we split this into pieces

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ 0

−∞
fX,Y (x, y) dy +

∫ ∞
0

fX,Y (x, y) dy

In the first integral y ranges from −∞ to 0 and so fX,Y (x, y) = 0 (we are in the second
case of the function definition).

In the second integral y ranges from 0 to ∞. Thus fX,Y (x, y) = 6e−2x−3y (we are in
the first case of the function definition).

Thus,

fX(x) =

∫ 0

−∞
fX,Y (x, y) dy +

∫ ∞
0

fX,Y (x, y) dy

=

∫ 0

−∞
0 dy +

∫ ∞
0

6e−2x−3y dy

= 0−
[
2e−2x−3y

]∞
y=0

= 2e−2x

Thus

fX(x) =

{
2e−2x if x > 0

0 otherwise

We also know that the marginal density fY is given by

fY (y) =

∫ ∞
−∞

fX,Y (s, y) ds

If y < 0 then, regardless of s fX,Y (x, y) = 0 (we are in the second case of the function
definition) so the integral, and thus the marginal density fY (y) = 0.

Now suppose that y > 0. As usual we split this into pieces:

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ 0

−∞
fX,Y (x, y) dx+

∫ ∞
0

fX,Y (x, y) dx

In the first integral x ranges from −∞ to 0 and so fX,Y (x, y) = 0 (we are in the second
case of the function definition).

In the second integral x ranges from 0 to ∞ and therefore fX,Y (x, y) = 6e−2x−3y (we
are in the first case of the function definition).

Putting this all together we see that

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ 0

−∞
fX,Y (x, y) dx+

∫ ∞
0

fX,Y (x, y) dx

= 0 +

∫ ∞
0

6e−2x−3y dx =

[
− 6

2
e−2x−3y

]∞
x=0

= 3e−3y
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Thus

fY (y) =

{
3e−3y if y > 0

0 otherwise

Therefore, we see that fX(x) · fY (y) = 0 = fX,Y (x, y) if either x ≤ 0 or y ≤ 0.
The only combination of values that leads to a non-zero value is when both x > 0

and y > 0, for which we get fX(x) · fY (y) = 6e−2x−3y = fX,Y (x, y).
Hence, overall, we conclude that X and Y are independent.

Week 4

Sometimes it may be difficult to use the above theorem because we need to find the
marginal densities and we may not be able to do the necessary integration. The following
theorem lets us prove independence without calculating the marginal densities.

Theorem 11. Suppose that X and Y have joint density function fX,Y . Then X and Y
are independent if and only if there are functions g and h such that

fX,Y (x, y) = g(x)h(y) for all x and y.

Proof. Part I. Suppose that fX,Y (x, y) = g(x)h(y). Set H =
∫∞
−∞ h(t) dt and G =∫∞

−∞ g(s) ds. We shall first prove that GH = 1. This will be used below. We have

1 =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (s, t) dt ds =

∫ ∞
−∞

∫ ∞
−∞

g(s)h(t) dt ds

=

∫ ∞
−∞

g(s) ds

∫ ∞
−∞

h(t) dt = GH

Next, let us compute fX(x) and fY (y).

fX(x) =

∫ ∞
−∞

fX,Y (x, t) dt =

∫ ∞
−∞

g(x)h(t) dt = g(x)

∫ ∞
−∞

h(t) dt = Hg(x).

Similarly,

fY (y) =

∫ ∞
−∞

fX,Y (s, y) ds =

∫ ∞
−∞

g(s)h(y) ds = h(y)

∫ ∞
−∞

g(s) ds = Gh(y).

It remains to note that

fX(x)× fY (y) = Hg(x)×Gh(y) = GHg(x)h(y) = g(x)h(y) = fX,Y (x, y).

By Theorem of independence using probability density functions, we can now state that
X and Y are independent.

Part II. The other direction is trivial. If X and Y are independent then fX,Y (x, y) =
fX(x)fY (y) and we can put g(x) = fX(x) and h(y) = fY (y).

Exercise. Try using Theorem 11 instead to answer the last example.

Example. Suppose X and Y have joint density function

fX,Y (x, y) =

{
2x if 0 < x < 1 and 0 < y < 1,

0 otherwise.

Are X and Y independent?
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Solution. Let

g(x) =

{
2x if 0 < x < 1

0 otherwise

and

h(y) =

{
1 if 0 < y < 1

0 otherwise
.

If x 6∈ (0, 1) or y 6∈ (0, 1) then g(x)h(y) = 0 which equals fX,Y (x, y) in this case.
If x ∈ (0, 1) and y ∈ (0, 1) then

g(x)h(y) = 2x = fX,Y (x, y).

In all cases, g(x)h(y) = fX,Y (x, y), so X and Y are independent.

Remark. One nice thing is that we don’t need to justify how we get g and h: all we need
to do is find them.

Remark. Also note that it was important that g(x)h(y) = fX,Y (x, y) for all x and y.

Example. Suppose X and Y have joint density function

fX,Y (x, y) =

{
2e−x−y if y > x > 0

0 otherwise.

Are X and Y independent?

Remark. It may look like the above factorizes: it does not because of the mixed “case”–
conditions (if y > x > 0) in the definition.

There are various ways to solve this problem.

Solution (Solution 1). Make use of the Theorem of independence of random variables
using probability density functions, and look at the marginal densities.

Remark. This solution is far from being the simplest one or the shortest one. However,
computing the marginal densities is in itself a useful exercise and this is one of the reasons
we discuss it hear.

See below two more solutions to this example and read carefully the remark to the
next example.

Note that when calculating the marginal densities, because of the multiple cases in
the definition of the density fX,Y , we have to split the integration into several parts.

For x > 0, we have

fX(x) =

∫ ∞
−∞

fX,Y (x, t) dt

=

∫ x

−∞
fX,Y (x, t) dt+

∫ ∞
x

fX,Y (x, t) dt

=

∫ x

−∞
0 dt+

∫ ∞
x

2e−x−t dt

= 0 +
[
−2e−x−t

]∞
t=x

= 2e−2x.
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Similarly, for y > 0, we have

fY (y) =

∫ ∞
−∞

fX,Y (s, y) ds

=

∫ 0

−∞
fX,Y (s, y) ds+

∫ y

0

fX,Y (s, y) ds+

∫ ∞
y

fX,Y (s, y) ds

=

∫ 0

−∞
0 ds+

∫ y

0

2e−s−y ds+

∫ ∞
y

0 ds

= 0 +
[
−2e−s−y

]y
s=0

+ 0 = 2e−y − 2e−2y = 2e−y(1− e−y).

Thus for y > x > 0 we see that fX(x)fY (y) = 2e−2x × 2e−y(1 − e−y) 6= fX,Y (x, y) so X
and Y are not independent.

Solution (Solution 2). Consider any point (x, y), with x > 0 and y > 0. Note that
then fX(x) =

∫∞
−∞ fX,Y (x, t) dt > 0 since fX,Y (x, t) > 0 when t > x. Similarly, fY (y) =∫∞

−∞ fX,Y (s, y) ds > 0 since fX,Y (s, y) > 0 when s ∈ (0, y). So, the product fX(x)fY (y) >
0 for any such (x, y), and thus 0 = fX,Y (x, y) 6= fX(x)fY (y) if 0 < y < x. Hence X and
Y are not independent.

Remark. In fact, Solution 2 proves the following general statement: if the domain where
fX,Y (x, y) > 0 is not a direct product of two subset of R, then X and Y are not indepen-
dent.Can you see that?

Solution (Solution 3). Since both X and Y can take any positive values but Y > X,
they cannot be independent.

More precisely, P (X ∈ [a, b]) > 0 for any b > a > 0 and P (Y ∈ [c, d]) > 0 for any
d > c > 0. However, P (X ∈ [a, b] and Y ∈ [c, d]) = 0 if d < a. Hence, Y and X are not
independent.

Example. Suppose X and Y have joint density function

fX,Y (x, y) =

{
x+ y if 0 < y < 1, 0 < x < 1

0 otherwise.

Are X and Y independent?

Remark. In this example, the approach suggested in Solution 1 leads to the correct
answer. Can you see that the approach suggested in solutions 2 and 3 doesn’t work
without additional computations?

Exercise. For the last example, invent a solution which doesn’t require the knowledge of
fX and fY .

Hint. Note that if X and Y are independent random variables, then the ratio ϕ(y) =
fX,Y (x1, y)/fX,Y (x2, y) doesn’t depend on y. Check whether that is the case in this exam-
ple.

3.3 Expectation of the product of independent random vari-
ables

Exercise. Suppose that X and Y are two random variables.
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(i). Prove that if X and Y are independent then

E(g(X)h(Y )) = E(g(X))E(h(y)),

where g, h are any functions.
(ii). Deduce that if X and Y are independent then

E(XkY m) = E(Xk)E(Y m),

(iii). Deduce that if X and Y are independent random variables then Corr(X, Y ) = 0.

3.4 Distribution of a sum of independent random variables

If two random variables are independent, we can obtain the distribution of their sum as
follows.

Definition. Suppose f(x) and g(y) are two continuous functions. Then, the convolution
f ∗ g is the function given by

(f ∗ g)(z) =

∫ +∞

−∞
f(z − y)g(y)dy =

∫ +∞

−∞
f(x)g(z − x)dx

The following theorem states that if X and Y are independent, then the density of
their sum is the convolution of their densities.

Theorem 12. Suppose X and Y are two independent random variables with probability
density functions fX(x) and fY (y), respectively. Then, their sum Z = X+Y is a random
variable with probability density function given by

fZ(z) = (fX ∗ fY )(z)

Proof. Left as an exercise. Not examinable.

In order to appreciate the above result, we present the following example.

Example. Suppose we choose independently X and Y to be two Exponential(λ) random
variables. Use their convolution to find the probability density function of their sum
Z = X + Y .

Answer. We have

fX(x) = fY (x) =

{
λe−λx, if x > 0,

0, otherwise .

The probability density function of their sum is given by

fZ(z) = (fX ∗ fY )(z) =

∫ +∞

−∞
fX(z − y)fY (y)dy

=

∫ ∞
0

λe−λyfX(z − y)dy

Note that 0 < z − y if and only if y < z, hence:
For z < 0, we have fZ(z) = 0.
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For z > 0, we have

fZ(z) =

∫ z

0

λ2e−λye−λ(z−y)dy =

∫ z

0

λ2e−λzdy = λ2ze−λz

Overall, we have

fZ(z) =

{
λ2ze−λz, if z > 0,

0 otherwise .

4 Distributions of functions of random variables

There are three main methods to find the distribution of a function of one or more random
variables. These are to use the CDF, to transform the probability density function directly
or to use moment generating functions. We shall study these in turn and along the way
find some results which are used in statistics.

4.1 Method of cumulative distribution functions

We first give an example before discussing the general method.

Example. Suppose the random variable Y has a probability density function

fY (y) =

{
3y2, if 0 < y < 1

0, otherwise.

What is the probability density function of U = 2Y + 3?

Answer. The range of U is 3 < U < 5 and

FU(u) = P (U ≤ u) = P (2Y + 3 ≤ u) = P

(
Y ≤ u− 3

2

)
=

∫ u−3
2

0

fY (y) dy =

∫ u−3
2

0

3y2 dy =

(
u− 3

2

)3

so

FU(u) =


0 u < 3(
u−3
2

)3
3 ≤ u ≤ 5

1 u > 5

and

fU(u) =
dF (u)

du
=

{
3
8
(u− 3)2 3 ≤ u ≤ 5

0 otherwise
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The general method

Suppose that X1, X2, . . . , Xn are random variables with pdf fX1,...,Xn(x1, ..., xn) and Y =
g(X1, ..., Xn), where g : Rn 7→ R is a function of n random variables. How can we
compute the pdf fY (y)?

Answer

1. Find the region in Rn where g(x1, ..., xn) ≤ y. Let it be D.

2. Compute FY (y) = P (Y ≤ y) =
∫
...
∫
D fX1,...,Xn(x1, ..., xn)dx1...dxn. (We integrate

the probability density function over the region D.)

3. Find the density function fY (y) by differentiating FY (y): fY (y) = dFY (y)
dy

.

Exercise (This is in fact a theorem – however, it can be viewed as an application of the
method of CDFs). If the random variable Z ∼ N(0, 1) then Z2 ∼ χ2(1).

Answer. One way to prove this is by using the method of cumulative distribution func-
tions. For Z ∼ N(0, 1), we have

fZ(z) =
1√
2π

exp

(
−z

2

2

)
−∞ < z <∞.

Then if U = Z2, we have

FU(u) = P (U ≤ u)

= P (Z2 ≤ u)

= P (−
√
u ≤ Z ≤

√
u)

=

∫ √u
−
√
u

fZ(z)dz

= Φ(
√
u)− Φ(−

√
u).

So if we differentiate both sides with respect to u we find

fU(u) = fZ(
√
u)

(
1

2
√
u

)
+ fZ(−

√
u)

(
1

2
√
u

)
=

1

2
√
u

[
fZ(
√
u) + fZ(−

√
u)
]

=
1

2
√
u

[
1√
2π

exp
(
−u

2

)
+

1√
2π

exp
(
−u

2

)]
=

1√
2πu

exp
(
−u

2

)
Since this is not yet in the desirable form to conclude that U is a χ2(1) random variable,
we rearrange the above expression as follows. Given that Γ(1/2) =

√
π, we can rewrite

this as

fU(u) =
(1/2)1/2 u(1/2)−1

Γ(1/2)
e−u/2

and so U has a Ga(1/2, 1/2) or χ2(1) distribution.

Remark. If you are unsure about the last step of the proof above, recall from your list
of continuous distributions the probability density function of a Gamma(α, β) random
variable.
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4.2 Method of direct transformation of one random variable

We first see the theorem of transformation of one random variable by a monotone function.
We do not prove this theorem in this course; the proof can be found in any standard
probability textbook.

Theorem 13. Let X be a continuous random variable with probability density function
fX and support I = [a, b]. Let g : I → R be a continuously differentiable monotonic
function with inverse function g−1 : J → I, where J = g(I). Then, the probability
density function fY of Y = g(X) is given by

fY (y) =

{
fX(g−1(y))

∣∣ d
dy
g−1(y)

∣∣ if y ∈ J
0 otherwise.

Example. Suppose X has the density

fX(x) =

{
θ

xθ+1 , x > 1

0, otherwise.

where θ is a positive parameter. This is an example of a Pareto distribution. What is the
probability density function of Y = lnX?

Answer. In this case, we have y = g(x) = lnx. As the support of X, i.e. the range
on which the density is non-zero, is x > 1 the support of Y is y > 0. The inverse
transformation is

x = g−1(y) = ey

and
d

dy
g−1(y) = ey.

Therefore

fY (y) =

{
θ

(ey)θ+1 e
y = θe−yθ, y > 0

0, otherwise

and so Y has the exponential distribution, Y ∼ Exp(θ).

Week 5

4.3 Method of direct transformation of two random variables

A theorem analogous to Theorem 13 allows one to compute the joint pdf of two (or indeed
n) transformed random variables. We don’t prove this theorem in this course. However,
we describe the method for two random variables. You are supposed to know this method
and to be able to use it.We remark that a similar procedure is used for N > 2 random
variables.

LetX1, X2 be two random variables with joint probability density function fX1,X2(x1, x2)
with support A = {(x1, x2) : f(x1, x2) > 0}. We are interested in the random variables
Y1 = g1(X1, X2) and Y2 = g2(X1, X2), where the transformation y1 = g1(x1, x2) and
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y2 = g2(x1, x2) is a 1-1 transformation of A onto B (in other words, B is the image of
A). So there is an inverse transformation x1 = f1(y1, y2) and x2 = f2(y1, y2).

We assume that the partial derivatives of the transformation are continuous and the
determinant of the Jacobian of the transformation

J =

∣∣∣∣∣ ∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣
satisfies J 6= 0 for (y1, y2) ∈ B. Then the joint probability density function of Y1 =
g1(X1, X2) and Y2 = g2(X1, X2) is

fY1,Y2(y1, y2) =

{
fX1,X2(f1(y1, y2), f2(y1, y2)) |J |, for (y1, y2) ∈ B,
0, otherwise.

Example. X1 and X2 have joint probability density function

f(x1, x2) =

{
exp(−(x1 + x2)), for x1 ≥ 0, x2 ≥ 0

0, otherwise.

Consider the transformation Y1 = X1 and Y2 = X1 + X2 and find the joint probability
density function of Y1 and Y2.

Answer. The transformation has inverse x1 = y1, x2 = y2 − y1 and by using A =
{(x1, x2) : x1 ≥ 0, x2 ≥ 0}, we conclude that the set B is given by B = {(y1, y2) : 0 ≤
y1 ≤ y2 ≤ ∞}. The Jacobian is

J =

∣∣∣∣ 1 0
−1 1

∣∣∣∣ = 1.

So the joint probability density function of Y1 and Y2 is given by

fY1,Y2(y1, y2) =

{
exp(−y2), 0 ≤ y1 ≤ y2 ≤ ∞
0, otherwise.

Note that, in this example, we started with two random variables that we transformed
into two other random variables. If we are only interested in one of the transformed
random variables, we can integrate out the other (Find the marginal probability density
function of the one we want).

4.4 Method of moment generating functions

4.4.1 Moment generating functions

The moment generating function of a random variable X, written as MX(t) is defined by

MX(t) := E[etX ]

and is defined for t in a region about 0, say for −h < t < h for some h.
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• If X is a discrete random variable, then the expectation E[etX ] is given by the sum

MX(t) =
∑
x

etxP (X = x).

• If X is a continuous random variable, then the expectation E[etX ] is given by an
integral

MX(t) =

∫ ∞
−∞

etxfX(x)dx.

The moment generating function is useful for the following reasons:

• M ′
X(0) = E[X]

• M ′′
X(0) = E[X2]

• Var(X) = M′′X(0)− (M′X(0))2

We prove these relations for continuous random variables below (similar proof for
discrete random variables can be obtained if we use

∑
instead of

∫
)

Proof. First note that MX(0) = E(e0) = E(1) = 1.
Differentiating MX(t) with respect to t assuming X is continuous we have

M ′
X(t) =

d

dt

∫
etxf(x) dx

=

∫
xetxf(x) dx

M ′
X(0) =

∫
xf(x) dx

= E[X]

where we assume that we can take d
dt

inside the integral. Similarly,

M ′′
X(t) =

d2

dt2

∫
etxf(x) dx

=

∫
x2etxf(x) dx

M ′′
X(0) =

∫
x2f(x) dx

= E[X2].

Hence Var(X) = M′′X(0)− (M′X(0))2.

An alternative related notion is the one of cumulant generating functions.

Definition. The cumulant generating function of a random variable X is given by

KX(t) := ln (MX(t)) , where MX(t) is the moment generating function of X.

The above formulae tell us that, if we can calculate the value of the integral (or of
the corresponding sum for a discrete random variable) in terms of t, then we can find the
moments of X by differentiating MX(t).
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Example. Consider an exponential random variable X with probability density function
f(x) = λe−λx for x > 0 and zero otherwise. What is the moment generating function,
the mean and the variance of X?

Answer. The moment generating function is

MX(t) =

∫ ∞
0

etxλe−λx dx

=

∫ ∞
0

λe−(λ−t)x dx

= λ

[
−e
−(λ−t)x

λ− t

]∞
0

=
λ

λ− t
for t < λ.

The above holds only for t < λ since λ− t must be positive for the integral to converge.
Therefore, we have

M ′
X(t) = λ(λ− t)−2,

which gives
E[X] = M ′

X(0) = λ−1.

Also,
M ′′

X(t) = 2λ(λ− t)−3,

which gives E(X2) = M ′′
X(0) = 2λ−2. Hence,

Var(X) = 2λ−2 − (λ−1)2 = λ−2.

Example. Suppose X has a Gamma distribution, Ga(α, β). What is the moment gen-
erating function of X?

Answer.

MX(t) =

∫ ∞
0

etx
βα xα−1 exp(−βx)

Γ(α)
dx

=

∫ ∞
0

βα

Γ(α)
xα−1 exp(−x(β − t)) dx

=
βα

(β − t)α

∫ ∞
0

(β − t)α

Γ(α)
xα−1 exp(−x(β − t)) dx

Now the integral is of the probability density function of a Ga(α, β − t) random variable
and so is equal to one. Thus the moment generating function for a Ga(α, β) random
variable X is

MX(t) =

(
β

β − t

)α
for all t < β.

Note we need to have t < β to make this work, which is fine, since we are interested in
letting t→ 0 for the calculation of moments.
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4.4.2 Method of moment generating functions

We are now ready to present the method of transformation of random variables using
moment generating functions.

The following theorem (which we won’t prove in this course) tells us why we can
use the moment generating function to find the distributions of transformed random
variables.

Theorem 14. If X1 and X2 are random variables and MX1(t) = MX2(t) then X1 and
X2 have the same distribution.

Below we see an example where the above theorem can be used to obtain the chi-
square distribution as the square of the standard Normal distribution.

Example. Suppose Z ∼ N(0, 1) and Y = Z2.

(a) Find the distribution of Y using the moment generating function technique.

(b) Find the mean and variance of Y using its moment generating function.

Answer. (a). We have that

MY (t) = E[etY ]

= E[etZ
2

]

=

∫ ∞
−∞

etz
2 1√

2π
exp

{
−z

2

2

}
dz

=

∫ ∞
−∞

1√
2π

exp

{
−z

2(1− 2t)

2

}
dz

= (1− 2t)−1/2
∫ ∞
−∞

(1− 2t)1/2√
2π

exp

{
−(1− 2t)

2
z2
}
dz

= (1− 2t)−1/2
∫ ∞
−∞

1√
2π(1− 2t)−1

exp

{
− z2

2(1− 2t)−1

}
dz

Now the function inside the integral is the probability density function of aN(0, (1−2t)−1)
random variable and so the integral equals to one. Therefore,

MY (t) =

(
1

1− 2t

)1/2

=

(
1/2

1/2− t

)1/2

which is the moment generating function of a Ga(1/2, 1/2) random variable or equiva-
lently of a χ2(1) random variable. Thus the distribution of Y is χ2(1).

(b). The mean of Y is given by

E(Y ) = M ′
Y (t)|t=0 =

[
1

2

(
1

1− 2t

)−1/2
· 2

(1− 2t)2

]
t=0

= 1.

We also have

E(Y 2) = M ′′
Y (t)|t=0 =

[
∂

∂t

(
1

1− 2t

)3/2
]
t=0

=

[
3

2

(
1

1− 2t

)1/2

· 2

(1− 2t)2

]
t=0

= 3,

hence, the variance Var(Y) = 3− 12 = 2.
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4.4.3 Sums of independent random variables

The moment generating function is also useful for proving important results for sums of
random variables.

Theorem 15. Suppose X1, X2, . . . , Xn are independent random variables with moment
generating function MXi(t), i = 1, . . . , n. Let Y =

∑n
i=1Xi then

MY (t) =
n∏
i=1

MXi(t).

Proof. This is easily proved.

MY (t) = E[etY ]

= E[et
∑n
i=1Xi ]

= E[etX1etX2 · · · etXn ]

= E[etX1 ]E[etX2 ] · · ·E[etXn ] (by independence)

= MX1(t)MX2(t) · · ·MXn(t)

Example. Suppose that X1, X2, . . . , Xn are independent exponential random variables
with mean λ−1 (Xi ∼ Exp(λ) for all i = 1, . . . , n). Show that Y =

∑n
i=1Xi has a

Ga(n, λ) distribution.

Answer. We showed in a previous example that an exponential distribution has moment
generating function

MXi(t) =
λ

λ− t
for λ > t.

Thus, since the Xi’s are independent, we can calculate

MY (t) =
n∏
i=1

λ

λ− t
=

(
λ

λ− t

)n
for λ > t,

which is the moment generating function of a Ga(n, λ) random variable.

Example. Suppose Y1, Y2, . . . , Yn are independent and normally distributed with mean
E[Yi] = µi and variance Var[Yi] = σ2

i . Define the new random variable U as

U = Y1 + Y2 + · · ·+ Yn.

Show that U is normally distributed with mean E[U ] =
∑n

i=1 µi and variance V ar[U ] =∑n
i=1 σ

2
i .

Answer. The moment generating function of Yi is

MYi(t) = exp(µit+
1

2
σ2
i t

2)
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The Yi’s are independent. Hence

MU(t) =
n∏
i=1

MYi(t)

=
n∏
i=1

exp
(
µit+

1

2
σ2
i t

2
)

= exp
(( n∑

i=1

µi
)
t+

1

2

( n∑
i=1

σ2
i

)
t2
)

Comparing this with the moment generating function of a normal we see that U is a
Normal random variable with mean

∑n
i=1 µi and variance

∑n
i=1 σ

2
i .

Statistical remarks

(1). Obtaining the distribution of transformations of random variables is a fundamental
tool used in Statistics. When testing a hypothesis it is natural to need to combine
two (or more) random variables to obtain another one for the purpose of the test.

(2). In this course, you will see this being applied when deriving the Student’s t distri-
bution, from a particular combination of a standard Normal random variable and
a chi-square random variable.

(3). The above t distribution is applied e.g. when performing a test of hypothesis for
the mean of a normal distribution when its variance is unknown.

(4). Also the chi-square distribution (obtained in previous section) is applied e.g. when
performing a test of hypothesis for the variance of a normal distribution when its
mean is unknown (and many other tests that you will encoutner later in the course).
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5 Inequalities & Sequences of random variables

In this section we start a very important topic: In many cases we cannot do the compu-
tations necessary to compute the probabilities, expectations, etc, that we are interested
in. In these cases, it can be very useful to have a rough idea of the size of these things,
even if we cannot get a precise answer.

5.1 Inequalities

We start with a simple example: Suppose that we know the expectation of some random
variable is small. We cannot in general say that it is unlikely to be large. E.g., it could
be a billion with probability 1/2 and minus a billion with probability 1/2. Then its
expectation is zero, but half of the times, it is extremely large. However, we can say
something if the random variable is non-negative.

Theorem 16 (Markov’s Inequality). Suppose that X is a non-negative random variable.
Then for any number δ > 0,

P (X ≥ δ) ≤ E(X)

δ
.

Proof. Define a random variable Z by setting

Z =

{
1 if X ≥ δ

0 if X < δ.

Note that X ≥ δZ. To see this, consider two cases:
(i) If X ≥ δ, the inequality holds because X ≥ δ ≡ δZ;
(ii) If X < δ, the inequality holds because X ≥ 0 ≡ δZ.

But then also E(X) ≥ E(δZ) = δE(Z). Note that

E(Z) = P (Z = 1) = P (X ≥ δ)

and hence
E(X) ≥ δP (X ≥ δ)

which is equivalent to the statement of the Theorem.

Example. When a person wants to pass a driving test, they need on average 2.5 attempts.
Prove that the chance they need 10 or more attempts is at most 1/4.

Answer. Let X be the number of attempts it takes to pass. We are told that E(X) = 2.5.
Hence by Markov’s Inequality

P (X ≥ 10) ≤ E(X)

10
=

2.5

10
=

1

4

Example. In the same situation as above what does Markov’s Inequality tell you about
the probability it takes 2 or more attempts?
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Answer. This time we have

P (X ≥ 2) ≤ E(X)

2
=

2.5

2
= 1.25.

This should not be confusing. The probability must be always less than 1, so in this case,
Markov’s Inequality is true, but not helpful.

Note the Markov’s inequality is only a bound - it says that the probability is not
more than something. It might actually be much smaller than this bound.

Theorem 17 (Chebyshev’s Inequality). Suppose that X is a random variable with mean
µ and variance σ2. Then for any number ε > 0 we have

P (|X − µ| ≥ ε) ≤ σ2

ε2
.

Proof. Let Y = (X − µ)2. Then E(Y ) = E((X − µ)2) = Var(X) (this is either the
definition of variance or an easy consequence).

We have {|X − µ| ≥ ε} = {Y ≥ ε2} so P (|X − µ| ≥ ε) = P (Y ≥ ε2). Now, since Y
is a non-negative random variable we can apply Markov’s inequality to get

P (|X − µ| ≥ ε) = P (Y ≥ ε2) ≤ E(Y )

ε2
=
E((X − µ)2)

ε2
=
σ2

ε2
.

Example. Suppose that when you sit an exam, your expected mark is 50 and standard
deviation is 10. Show that the probability that you get a first class mark (70 or more) is
at most 1/4.

Answer. Let X be your mark. We know that X has mean 50 and variance 100. Hence
by Chebychev’s Inequality

P (X ≥ 70) ≤ P (|X − 50| ≥ 20) = P (|X − E(X)| ≥ 20) ≤ 100

202
=

1

4
.
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Week 6

5.2 The Law of Large Numbers (LLN)

The theme in this section is the following: “if we add lots of random variables then the
“errors” average out.”

Before we state and prove the LLN, let us recall the following property of the variance
which plays a very important role in the proof.

Lemma 18. If X1, X2, ..., Xn is a sequence of independent random variables with E(Xi) =
µj, Var(Xj) = σ2

j then

Var

(
n∑
j=1

Xj

)
=

n∑
j=1

σ2
j .

Proof. See Coursework for the proof.

Theorem 19 (Law of Large Numbers). Suppose that X1, X2, . . . is a sequence of inde-
pendent random variables with mean µ and variance σ2. Let

Yn =
1

n

n∑
i=1

Xi.

Then for any number ε > 0

P (|Yn − µ| ≤ ε)→ 1 as n→∞.

Proof. We have

E(Yn) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) = µ,

and

Var(Yn) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
σ2

n
,

where we use two properties of variance: Var(cZ) = c2Var(Z) and Lemma 18.
Hence by Chebyshev’s inequality we have

P (|Yn − µ| > ε) ≤ σ2/n

ε2
=

σ2

nε2
.

Since σ2

nε2
tends to zero as n→∞, so does P (|Yn − µ| > ε). Hence

P (|Yn − µ| ≤ ε) = 1− P (|Yn − µ| > ε)→ 1.

Remark. This is also called the weak LLN. It basically says that for some specified “large”
n, the average Yn of the (X1, . . . , Xn) is likely to be close to the mean µ. In fact, we can
repeat the arguments of the above proof, to also proved a useful estimate:

P (|Yn − µ| ≤ ε) ≥ 1− σ2

nε2
.
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5.3 Central Limit Theorem

We have seen that the average value Yn = 1
n

∑n
k=1Xk converges to the mean (when the

Xk are independent identically distributed random variables with finite variance). The
Central Limit Theorem gives a much more precise description of the behaviour of the Yn.
We basically define a “scaled version” of Yn which has zero mean and variance 1.

Theorem 20 (Central Limit Theorem). Suppose that X1, X2, X3, . . . are independent
identically distributed random variables with mean µ and variance σ2. Let

Zn =

∑n
k=1Xk − nµ
σ
√
n

Then Zn converges, as n → ∞, to a normal random variable with parameters (0, 1) in
the sense that, for any s, t, such that s < t, we have

P (s ≤ Zn ≤ t)→
∫ t

s

1√
2π
e−x

2/2dx = Φ(t)− Φ(s),

where Φ(z) =
∫ z
−∞

1√
2π
e−x

2/2dx is the cumulative distribution function of a standard
Normal random variable.

Proof. Can be proved using moment generating functions and such a proof can be found
in standard textbooks of probability (this is beyond the scope of this course).

Statistical remarks

(1) The Central Limit Theorem (CLT) only tells you about what happens as n→∞.

(2) However, in Statistics, this is commonly (and very conveniently) used for finite but
large values of n.

Suppose that X1, X2, . . . are independent identically distributed random variables
with mean µ and variance σ2. For “large” n, we define their sum by

Sn =
n∑
k=1

Xk.

According to the CLT,

the distribution of the random variable Zn =
Sn − nµ
σ
√
n

is approximately standard normal.

Using this we can also characterise the distribution of the average Yn as n increases,
which is a very useful result in statistical applications. Namely, we get that

the distribution of the average Yn := Sn
n

is approximately N(µ, σ
2

n
).

This result justifies also the extensive use of Normal distributions in real-life applications
to model data resulting from many different independent factors (roughly independent)
or when the distribution of data is unknown.

Finally, we can see from the above statements that

the distribution of the random variable Sn is approximately N(nµ, nσ2).
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Example. Suppose that Wi is the amount (in pounds) that gambler i wins at a visit
in a casino, for i = 1, 2, . . .. These amounts are considered to be independent random
variables with mean β pounds and variance 4β2.

(i). What is the approximate distribution of the total profit of 100 gamblers?

(ii). What is the approximate probability that the total profit of 100 gamblers is negative
(i.e. casino wins money), if their individual average profit is −£5 for each player
(negative profit translates to a loss)?

Answer. (i). We know that the total profit of 100 customers is given by T100 = W1 +
W2 + · · · + W100 where W1,W2, . . . are their individual profits and we know that they
are independent random variables with mean β and variance 4β2. Hence E(Wi) = β and
Var(Wi) = 4β2. Therefore E(T100) = 100β and Var(T100) = 400β2.

Hence by the approximate Central Limit Theorem

T100 ≈ N
(
100β, 400β2

)
.

(ii). In this case, we have β = −5. The approximate distribution (from part (i)) is
therefore

T100 ≈ N (−500, 10000) .

Supposing that Z ∼ N(0, 1), this implies that

P (T100 < 0) ≈ P
(
Z <

500

100

)
= P (Z < 5) = 0.9987

Therefore, we do not expect that the casino will lose any money with a 99.87% chance.
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