Suppose a two-sided hypothesis test for the difference in proportions between two independent samples is 2.7. Find the p -value and the critical region with a 5% significance level.

Suppose a two-sided hypothesis test for the difference in proportions between two independent samples is 2.7. Find the p -value and the critical region with a 5% significance level.

```
# p-value
2*pnorm(-2.7)
## [1] 0.006933948
# or alternatively
2* (1-pnorm(2.7))
## [1] 0.006933948
# critical region
qnorm(0.025)
## [1] -1.959964
qnorm(0.975)
## [1] 1.959964
```

Suppose a one-sided hypothesis test for the difference in proportions between two independent samples is 2.7. Find the p-value and the critical region with a 5% significance level.

Suppose a one-sided hypothesis test for the difference in proportions between two independent samples is 2.7. Find the p-value and the critical region with a 5% significance level.

```
# p-value
1-pnorm(2.7)
## [1] 0.003466974
# critical region
qnorm(0.95)
## [1] 1.644854
```

Compute the rejection region for a goodness of fit statistic with 5 degrees of freedom and a 1% significance level.

Compute the rejection region for a goodness of fit statistic with 5 degrees of freedom and a 1% significance level.

```
qchisq(0.99, df = 5)
## [1] 15.08627
```

Suppose a two-sided hypothesis test for the difference in means between fifteen matched pairs is -1.7. Find the p-value and the critical region with a 5% significance level.

Suppose a two-sided hypothesis test for the difference in means between fifteen matched pairs is -1.7. Find the p-value and the critical region with a 5% significance level.

```
# p-value
2*pt(-1.7,14)
## [1] 0.1112296
# critical region
qt(0.025,14)
## [1] -2.144787
qt(0.975,14)
## [1] 2.144787
```

