- Suppose a goodness of fit statistic is 10.3 , with $\mathrm{df}=6$. Find the P-value.
- Suppose a goodness of fit statistic is 10.3 , with $\mathrm{df}=6$. Find the P -value.

1-pchisq(10.3, df = 6)
\#\# [1] 0.1125737

- Suppose a goodness of fit statistic is 10.3 , with $\mathrm{df}=6$. Find the P -value.

1-pchisq(10.3, $\mathrm{df}=6)$
\#\# [1] 0.1125737

- Suppose a goodness of fit statistic is 6.56 , with $\mathrm{df}=4$. Find the P-value.
- Suppose a goodness of fit statistic is 10.3 , with $\mathrm{df}=6$. Find the P -value.

```
1-pchisq(10.3, df = 6)
```

\#\# [1] 0.1125737

- Suppose a goodness of fit statistic is 6.56 , with $\mathrm{df}=4$. Find the P-value.

1-pchisq(6.56, $\mathrm{df}=4)$
\#\# [1] 0.1610489

- Suppose a goodness of fit statistic is 10.3 , with $\mathrm{df}=6$. Find the P -value.

1-pchisq(10.3, $\mathrm{df}=6)$
\#\# [1] 0.1125737

- Suppose a goodness of fit statistic is 6.56 , with $\mathrm{df}=4$. Find the P -value.

```
1-pchisq(6.56, df = 4)
## [1] 0.1610489
```

- Suppose a goodness of fit statistic is 9.8 , with $\mathrm{df}=3$. Find the P -value.
- Suppose a goodness of fit statistic is 10.3 , with $\mathrm{df}=6$. Find the P -value.

```
1-pchisq(10.3, df = 6)
## [1] 0.1125737
```

- Suppose a goodness of fit statistic is 6.56 , with $\mathrm{df}=4$. Find the P -value.

```
1-pchisq(6.56, df = 4)
## [1] 0.1610489
```

- Suppose a goodness of fit statistic is 9.8 , with $\mathrm{df}=3$. Find the P -value.

```
1-pchisq(9.8, df = 3)
## [1] 0.020345
```

- Suppose a goodness of fit statistic is 10.3 , with $\mathrm{df}=6$. Find the P -value.

```
1-pchisq(10.3, df = 6)
## [1] 0.1125737
```

- Suppose a goodness of fit statistic is 6.56 , with $\mathrm{df}=4$. Find the P -value.

```
1-pchisq(6.56, df = 4)
## [1] 0.1610489
```

- Suppose a goodness of fit statistic is 9.8 , with $\mathrm{df}=3$. Find the P -value.

```
1-pchisq(9.8, df = 3)
## [1] 0.020345
```

- Compute the rejection region for a goodness of fit statistic with 5 degrees of freedom and a 5% significance level.
- Compute the rejection region for a goodness of fit statistic with 5 degrees of freedom and a 5% significance level.

```
qchisq(0.95, df = 5)
## [1] 11.0705
```

- Compute the rejection region for a goodness of fit statistic with 5 degrees of freedom and a 5% significance level.
qchisq(0.95, df = 5)
\#\# [1] 11.0705
- Compute the rejection region for a goodness of fit statistic with 5 degrees of freedom and a 1% significance level.
- Compute the rejection region for a goodness of fit statistic with 5 degrees of freedom and a 5% significance level.
qchisq(0.95, $d f=5)$
\#\# [1] 11.0705
- Compute the rejection region for a goodness of fit statistic with 5 degrees of freedom and a 1% significance level.

```
qchisq(0.99, df = 5)
## [1] 15.08627
```

- Suppose the test statistics of a two sided hypothesis test for the variance statistic is 10.3 , with $\mathrm{df}=6$. Find the P -value.
- Suppose the test statistics of a two sided hypothesis test for the variance statistic is 10.3 , with $\mathrm{df}=6$. Find the P -value.

```
pchisq(10.3, df = 6)
## [1] 0.8874263
1-pchisq(10.3, df = 6)
## [1] 0.1125737
2*(1-pchisq(10.3, df = 6))
## [1] 0.2251474
```

- Suppose a goodness of fit statistic is 6.56 , with $\mathrm{df}=4$. Find the P -value.
- Suppose a goodness of fit statistic is 6.56 , with $\mathrm{df}=4$. Find the P-value.

```
pchisq(6.56, df = 4)
## [1] 0.8389511
1-pchisq(6.56, df = 4)
## [1] 0.1610489
2*(1-pchisq(6.56, df = 4))
## [1] 0.3220979
```

