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1 Sampling distributions related to the normal distribution
Up to now, we have generally assumed that all parameters of a probability distribution we are
working with are known. We will now begin the study of situations where the parameters of a
probability distribution are not known to us, and must be inferred on the basis of samples from
the probability distribution; this is known as statistical inference. In this part of the course,
we will focus mainly on inference with the use of confidence intervals and hypothesis tests.
A large part of statistical inference involves estimation of unknown parameters of probability
distributions, however we will not consider this aspect of statistical inference in detail.

In statistical inference, a population is defined to be a set of objects (e.g. the population of a
country) which we are interested in studying in order to determine certain properties of it (e.g.
the average height or income). Since a population is often impractical to survey in its entirety,
we base our inferences about a population on a sample, defined to be subset of a population. A
property over a population will be assumed to have a probability distribution (e.g. heights in
a population have a normal distribution) and we will use random variables to model samples
from a population. We will use upper case, i.e. Yi to denote random variables and lower case
i.e. yi to denote observed values of random variables.

Let Y1, . . . , Yn be random variables. A statistic T = T (Y1, . . . ., Yn) is a function of
Y1, . . . , Yn that does not depend on any unknown parameters. Specifically, it can only de-
pend on Y1, . . . , Yn and constants we know. A statistic T is a random variable and has its own
probability distribution, known as the sampling distribution of T . The probability distribution
of T may (or may not) depend on unknown parameters. We will use tobs to denote the ob-
served value of a statistic. We will later see examples of statistics in the context of hypothesis
testing.

We next define the notion of a confidence interval. Let Y1, . . . , Yn be random variables with
some joint distribution that depends on a parameter θ. Let L(Y1, . . . , Yn) < U(Y1, . . . , Yn) be
two statistics. We call the (random) interval

[L(Y1, . . . , Yn), U(Y1, . . . , Yn)] (1)

a 100(1− α)% confidence interval for θ if

P (L(Y1, . . . , Yn) < θ < U(Y1, . . . , Yn)) = 1− α. (2)

For constructing confidence intervals, we will rely on a general technique known as the pivotal
method. Let Y1, . . . , Yn have a joint distribution which depends on an unknown parameter θ.
Next, let g(Y1, . . . , Yn, θ) be a function of Y1, . . . Yn and θ with a sampling distribution that we
know and that does not depend on θ. Since we know the sampling distribution of g, we can
find a and b with

P (a < g(Y1, . . . , Yn, θ) < b) = 1− α (3)

and rewrite as an inequality in terms of the unknown parameter θ

P (L(Y1, . . . , Yn) < θ < U(Y1, . . . Yn)) = 1− α (4)

to obtain a 100(1 − α)% confidence interval for θ. We will see examples of this technique in
applications later.

We review some basic terminology and motivation of hypothesis testing. Suppose we ob-
serve data y1, . . . , yn from an experiment and we have a collection of possible distributions for
Y1, . . . , Yn, indexed by a parameter θ, which may be vector-valued. Now suppose we have a
theory about what θ is. We will denote this theory by H0 and term it the null hypothesis. H0
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states that θ is in a certain set. H1, which we term the alternative hypothesis, states that θ is
not in the set defined by H0. A hypothesis is termed as simple if it contains a single point.
Otherwise, the hypothesis is known as a composite one.

Our goal is to determine whether the data provides evidence against H0. A test statistic
T = T (Y1, . . . , Yn) will be used to measure evidence against H0. Large values of the test
statistic will be taken to be evidence against H0. Whenever the value of T is sufficiently large,
we will reject the null hypothesis H0. To formally do this, we divide the set of possible values
of T into two regions. If the observed value of T falls into the first one, we will not reject H0.
If it falls into the other one, we will reject H0, this is known as the critical region, or rejection
region.

When conducting a hypothesis test, two types of errors are possible. A Type I error occurs
when the null hypothesis is falsely rejected given that it is true — that is, the data comes from
a distribution with θ in H0, yet the observed T lies in the critical region. A Type II error occurs
when we falsely accept H0. The power function π(θ) associated to a hypothesis test is the
probability of rejecting H0 when the data comes from a distribution with parameter θ. We are
particularly interested in values of π(θ) when θ is in H1, as this tells us how well the test is able
correctly reject H0, when it is false.

The significance level of a hypothesis test is defined as the probability of falsely rejecting
the null hypothesis given that it is true, i.e. the probability of a Type I error. In testing a
hypothesis, we want to minimize the probability of a Type I error. However, doing this alone is
insufficient, since we can always make this probability 0 by never rejecting the null hypothesis!
This would in turn lead to a lot of Type II errors. Therefore, we need a compromise between
the probabilities of each of these errors in choosing how to construct a hypothesis test. A
significance level is usually denoted by α and often-used values are 0.05, 0.1, 0.01.

In this chapter we will look at results relating to a normal distribution. You have already
seen some in the first half of the course and some others in the first year. These results will
enable us to make tests about the parameters of the normal distribution, the mean and variance,
and find confidence intervals.

We will define a random sample Y1, . . . , Yn to be random variables which are independent
and have the same distribution. Another way this is described is to say the Yis are independent
and identically distributed, abbreviated as iid.

Let Y1, Y2, . . . , Yn be a random sample from a normal distribution mean µ and variance σ2.
We define the sample mean as

Ȳ =
1

n

n∑
i=1

Yi

and the sample variance as

S2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2.

Remember the difference between (a) Ȳ , this is a random variable which is used as an
estimator of the population mean µ, it has a distribution and we can find its mean and variance;
(b) µ, which is an unknown parameter; (c) ȳ, the estimate of µ, this is a number which we can
calculate once we have measured all the sample values.

Similarly the random variable S2 is the estimator of the parameter σ2 and the number s2 is
the estimate.

Lemma 1.1. The distribution of Ȳ is N(µ, σ2/n).
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This follows from the example at the bottom of page 35 in the lecture notes of the proba-
bility part of this module since

Ȳ =
1

n
Y1 + · · ·+ 1

n
Yn

so using the results for the distribution of U in that example with ai = 1/n, µi = µ and σ2
i = σ2

we see that
E[Ȳ ] =

1

n
µ+ · · ·+ 1

n
µ = µ

and

Var[Ȳ ] =
1

n2
σ2 + · · ·+ 1

n2
σ2 =

σ2

n
.

So if

Z =
Ȳ − µ

σ/
√
n

=

√
n(Ȳ − µ)

σ

then Z ∼ N(0, 1).
Recall also, from an example on page 29 in the lecture notes of the probability part of this

module, that if Zi = (Yi − µ)/σ then
∑

Z2
i ∼ χ2

n.

1.1 Test of hypothesis for the mean when the variance is known
In the lecture I discussed testing if a mean is equal to a particular value when the variance is
known. This is revision from the first year. Here are some notes on it and an example.

General procedure for hypothesis tests of the mean value

Suppose that µ is the unknown mean of some large population with variance σ2; that H0 and
H1 are phrased in terms of µ; that X̄ is the mean of a random sample of size n; and that we can
assume that X̄ is (approximately) normal. Remember that E(X̄) = µ and var(X̄) = σ2/n.

1. Population variance σ2 known

(a) One-sided tests (also called one-tailed tests)

(i) H0: µ ≤ µ0, where µ0 is known;
H1: µ > µ0.

We know that
X̄ − µ0

σ/
√
n

∼ N(0, 1) under H0,

so we take
X̄ − µ0

σ/
√
n

as the test statistic. For significance level α, the rejection

region is {z : z > zα}.

Given the sample mean x̄ of the data, reject H0 if
x̄− µ0

σ/
√
n

≥ zα.

(ii) H0: µ ≥ µ0, where µ0 is known;
H1: µ < µ0.

By a similar argument, reject H0 if
x̄− µ0

σ/
√
n

≤ −zα.
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(b) Two-sided tests (also called two-tailed tests)
H0: µ = µ0, where µ0 is known;
H1: µ ̸= µ0.

Use the same test statistic
X̄ − µ0

σ/
√
n

but with the symmetric rejection region {z : z <

−zα/2 ∪ z > zα/2}.

Reject H0 if
x̄− µ0

σ/
√
n

≤ −zα/2 or
x̄− µ0

σ/
√
n

≥ zα/2.

2. σ2 unknown, but n large (n ≥ 50)
As Case 1, but replace the known σ by the sample standard deviation s.

Thus the test statistic is
X̄ − µ0

S/
√
n

but the rejection region does not change.

These tests are all called “one-sample z-tests”.

Example 1.1. Drills being manufactured are supposed to have a mean length of 4cm. From
past experience we know the standard deviation is equal to 1cm and the lengths are normally
distributed. A random sample of 10 drills had a mean of 4.5cm. Test the hypothesis that the
mean is 4.0 with significance level α = 0.05.

We have
H0 : µ = 4.0 versus H1 : µ ̸= 4.0

We know that

X̄ ∼ N

(
µ,

1

10

)
so if H0 is true

Z =
X̄ − 4√
1/10

∼ N(0, 1).

The observed value of Z is
4.5− 4√

1/10
= 1.58

For a 2 sided test with α = 0.05 the rejection region is {z : |z| > 1.96}, as we can compute in
R as follows:

> qnorm(0.975)
[1] 1.959964
> qnorm(0.025)
[1] -1.959964

Since z = 1.58 we do not reject H0 at the 5% level. Alternatively, we can compute the p-value
in R.

> 2*(1-pnorm(1.58))
[1] 0.1141069

The p value is 2× P (Z > 1.58) = 2× (1− Φ(1.58)) = 2(1− 0.9429) = 0.1142 and so there
is no evidence against H0.
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1.2 The distribution of the sample variance
Theorem 1.1. If Z1, Z2, . . . , Zn are a random sample from a standard normal distribution
N(0, 1) then

1. Z̄ has a N(0, 1/n) distribution.

2. Z̄ and
∑

(Zi − Z̄)2 are independent.

3.
∑

(Zi − Z̄)2 has a chi-square distribution with n− 1 degrees of freedom.

These results allow us to find the distribution of the sample variance.

Corollary 1.1. Suppose X1, . . . , Xn are a random sample from a N(µ, σ2) distribution.
Let Zi = (Xi − µ)/σ so that Zi ∼ N(0, 1), Z̄ = (X̄ − µ)/σ and Z̄ ∼ N(0, 1/n). Then

Zi − Z̄ = (Xi − X̄)/σ and
∑

(Zi − Z̄)2 =
∑

(Xi − X̄)2/σ2.
It follows that (X̄ − µ)/σ and

∑
(Xi − X̄)2/σ2 are independent which implies that X̄ and∑

(Xi − X̄)2 are independent and hence X̄ and S2 are independent.
Moreover, it follows that

∑
(Zi − Z̄)2 =

∑
(Xi − X̄)2/σ2 = (n − 1)S2/σ2 has a χ2

n−1

distribution.

From the fact that the mean of a χ2
n−1 is n− 1 we see that

E[(n− 1)S2/σ2] = n− 1

and so E[S2] = σ2.
We can use these results to carry out tests of hypotheses about σ2 and find confidence

intervals for it.

1.3 Test of hypothesis for the variance
Let X1, . . . , Xn be a random sample from a population which is N(µ, σ2) where µ and σ2 are
unknown. To test H0 : σ

2 = σ2
0 versus H1 : σ

2 ̸= σ2
0 we use the test statistic

W =
(n− 1)S2

σ2
0

∼ χ2
n−1

if H0 is true.
Since the χ2

ν distribution is defined on (0,∞) and is skewed two-sided rejection regions are
quite complicated. The rejection region is

{w : w > χ2
n−1(α/2) ∪ w < χ2

n−1(1− (α/2))}.

For example if α = 0.05 and n = 9 then from R we have

> qchisq(0.025, 8)
[1] 2.179731
> qchisq(0.975, 8)
[1] 17.53455
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that is,
χ2
8(0.025) = 17.53 χ2

8(0.975) = 2.180

and we would only reject H0 at the 5% significance level if the observed value of W was
outside the interval [2.180, 17.53].

Similarly for a one-sided test, for example if H1 : σ
2 > σ2

0 then we would reject H0 at the
α significance level if

w > χ2
n−1(α)

Example 1.2. It is important that the variance of the percentage impurity levels of a chemical
don’t exceed 4.0. A random sample of 20 consignments had a sample variance of 5.62. Test
the hypothesis that the population variance is at most 4.0 at a 5% level of significance and find
the P value. (If you aren’t sure about P values see Section 3.5.)

Our null and alternative hypotheses are

H0 : σ
2 = 4.0 H1 : σ

2 > 4.0

The test statistic

W =
(n− 1)S2

4.0
∼ χ2

19

if H0 is true. The observed value of W is w = 19×5.62
4

= 26.695. From R

> qchisq(0.95, 19)
[1] 30.14353

χ2
19(0.05) = 30.14. Since our observed value is less than this we fail to reject H0 at the 5%

significance level.
The P value is P (W > 26.695). Now from R

> pchisq(26.695, 19)
[1] 0.8880396

with ν = 19 P (W < 26.695) = 0.8880. Thus P (W > 26.695) = 1− 0.8880 = 0.1120. Using
our scale of evidence there is no evidence against H0.

For a two sided alternative the P value is found using the formula 2 × min{P (W <
wobs, P (W > wobs)}. This ensures the P value lies between 0 and 1.

Example 1.3. Take the data in the last example but suppose that we want to test if the variance
to equal 4.0 against an alternative it is not equal to 4.0.. Now from R

> qchisq(0.025, 19)
[1] 8.906516
> qchisq(0.975, 19)
[1] 32.85233

and as our observed value lies between these value we fail to reject H0. The P value is 2 ×
0.1120 = 0.2240.
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1.4 Confidence interval for the variance
A 100(1− α)% confidence interval for σ2 is(

(n− 1)s2

χ2
n−1(α/2)

,
(n− 1)s2

χ2
n−1(1− α/2)

)
since

P

[
χ2
n−1(1− α/2) <

(n− 1)S2

σ2
< χ2

n−1(α/2)

]
= 1− α

so rearranging the inequalities for σ2

P

[
(n− 1)S2

χ2
n−1(α/2)

< σ2 <
(n− 1)S2

χ2
n−1(1− α/2)

]
This is a probability statement about the random variable S2. Replacing the random variable
by the observed value s2 we obtain the confidence interval.

One way to interpret the confidence interval is that it is all the values of the null hypotheses
we would not reject when carrying out a two sided test with significance level α.

Example 1.4. Drills being manufactured are supposed to have a mean length of 4cm. From
past experience we know the lengths are normally distributed. A random sample of 10 drills
had a mean of 4.5cm and sample variance 1.2. Find 95% and 99% confidence intervals for the
population variance. Note the following values from R:

> qchisq(0.975, 9)
[1] 19.02277
> qchisq(0.025, 9)
[1] 2.700389
> qchisq(0.995, 9)
[1] 23.58935
> qchisq(0.005, 9)
[1] 1.734933

The 95% confidence interval is given by(
(n− 1)s2

19.02
,
(n− 1)s2

2.700

)
=

(
9× 1.2

19.02
,
9× 1.2

2.700

)
= (0.568, 4.000) .

The 99% confidence interval is given by(
(n− 1)s2

23.59
,
(n− 1)s2

1.735

)
=

(
9× 1.2

23.59
,
9× 1.2

1.735

)
= (0.458, 6.225) .

1.5 The t distribution
In this section we shall derive the pdf for the t distribution.
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Let W ∼ N(0, 1) and V ∼ χ2
r where W and V are independent. Remember this means

V ∼ Ga(r/2, 1/2). It follows that the joint pdf of W and V is

h(w, v) =
1√
2π

e−w2/2 1

Γ(r/2)2r/2
v

r
2
−1e−v/2

for −∞ < w < ∞, 0 < v < ∞ and zero otherwise.
Now define the random variable T by

T =
W√
V/r

.

We make the transformation t = w√
v/r

u = v which maps A = {(w, v) : −∞ < w <

∞, 0 < v < ∞} one-to-one and onto B = {(t, u) : −∞ < t < ∞, 0 < u < ∞}. The inverse
transformation is w = t

√
u√
r
, v = u so the Jacobian is

J =

∣∣∣∣∣
√
u√
r

t
2
√
ur

0 1

∣∣∣∣∣ =
√
u√
r
.

So the joint pdf of T and U is

g(t, u) =
1√
2π

e−t2u/2r 1

Γ(r/2)2r/2
u

r
2
−1e−u/2

√
u√
r

=
1√

2πΓ(r/2)2r/2
√
r
u

r+1
2

−1e−u/2(1+t2/r)

=
1√

2πrΓ(r/2)2r/2
u

r+1
2

−1e−u/2(1+t2/r).

So the marginal pdf of T is

fT (t) =

∫ ∞

0

g(t, u) du

=

∫ ∞

0

1√
2πrΓ(r/2)2r/2

u
r+1
2

−1e−u/2(1+t2/r) du.

Now consider ∫ ∞

0

u
r+1
2

−1e−u/2(1+t2/r) du.

We can see this is like the pdf of a Gamma distribution with α = (r+1)/2 and β = (1+t2/r)/2
and therefore this integral is equal to

Γ((r + 1)/2)

((1 + t2/r)/2)(r+1)/2

Thus

f(t) =
Γ((r + 1)/2)√
2πrΓ(r/2)2r/2

2(r+1)/2

((1 + t2/r))(r+1)/2
.

The two’s cancel to give us

f(t) =
Γ((r + 1)/2)√

πrΓ(r/2)

1

((1 + t2/r))(r+1)/2
.
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We call the distribution with this pdf a t distribution with r degrees of freedom. Some books
call it Student’s t distribution because the first person to derive it published his result under the
pseudonym of Student.

Note that a t distribution with 1 degree of freedom has pdf

Γ((1)√
πΓ(1/2)

1

((1 + t2/r))
.

But we know Γ(1) = 1 and Γ(1/2) =
√
π so the pdf reduces to

1

π

(
1

1 + t2

)
which we saw before was the pdf of a Cauchy distribution.

Corollary 1.2. If X1, . . . , Xn is a random sample from N(µ, σ2), the sample mean is X̄ =
1
n

∑
Xi and the sample variance S2 = 1

n−1

∑
(Xi − X̄)2 then

T =
X̄ − µ

S/
√
n

∼ tn−1

that is a t distribution with n− 1 degrees of freedom.

This is because we can write

T =
X̄ − µ

σ/
√
n
/

√
(n− 1)S2

σ2(n− 1)

where X̄−µ
σ/

√
n
∼ N(0, 1) and (n−1)S2

σ2 ∼ χ2
n−1 so T is the ratio of a N(0, 1) rv and the square root

of a chi-square rv with n− 1 degrees of freedom divided by n− 1.

1.6 Test of hypothesis for the mean when the variance is unknown
Let X1, . . . , Xn be a random sample from a N(µ, σ2) population. We assume the values of
both µ and σ2 are unknown.

We want to test H0 : µ = µ0. When σ2 is known we know from the first year that

Z =
(X̄ − µ0)

√
n

σ
∼ N(0, 1).

When σ2 is unknown we estimate it by S2 the sample variance defined by

S2 =

∑
(Xi − X̄)2

n− 1
.

The distribution of this statistic is no longer standard normal. We have seen that

T =
(X̄ − µ0)

√
n

S
∼ tn−1

a Student t distribution with n−1 degrees of freedom. Note the degrees of freedom is the same
as the divisor in the sample variance.

A t distribution has heavier tails than a normal distribution. As the degrees of freedom tends
to infinity a t distribution tends to a standard normal. We call the resulting test a t test or one
sample t test.

If the alternative hypothesis is H1 : µ ̸= µ0 then I shall write the rejection region as
{t : |t| > tn−1(α/2)}. If the alternative hypothesis is H1 : µ > µ0 then the rejection region is
{t : t > tn−1(α)}.
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Example 1.5. A gunpowder manufacturer has developed a new powder which was tested on 8
shells. The manufacturer claims that average muzzle velocity using the new powder is no less
than 3000 ft/sec. Test the claim at the α = 0.025 level of significance. The observations for the
8 shells were

3005 2925 2935 2965
2995 3005 2937 2905

Let Yi be the velocity of shell i. Then ȳ = 2959 and the sample standard deviation is s = 39.1
Our null hypothesis is H0 : µ = 3000 versus an alternative H1 : µ < 3000.
The test statistic is

T =
(X̄ − µ0)

√
n

S
∼ tn−1

if H0 is true.
The observed value of T is

t =
(2959− 3000)

√
8

39.1
= −2.966.

For α = 0.025 with 7 degrees of freedom the critical region is {t : t < −2.365} as it follows
from R

> qt(0.025, 7)
[1] -2.364624

and so we reject H0 at the 2.5% significance level.

1.7 Confidence interval for the mean when the variance is unknown
Since T =

(Ȳ−µ)

√
n

S
∼ tn−1 we have

P

[
−tn−1(α/2) <

(Ȳ − µ)

√
n

S
< tn−1(α/2)

]
= 1− α

rearranging we have

P

[
Ȳ − S√

N
tn−1(α/2) < µ < Ȳ +

S√
N
tn−1(α/2)

]
= 1− α

Thus replacing the rvs Ȳ and S by their observed values a 100(1−α)% confidence interval for
µ is

ȳ ± tn−1(α/2)s/
√
n.

One interpretation of this interval is that it is all the values of the null hypothesis which would
not be rejected in a two-sided test with significance level α.

Example 1.6. Drills being manufactured are supposed to have a mean length of 4cm. From
past experience we know the lengths are normally distributed. A random sample of 10 drills
had a mean of 4.5cm and sample variance 1.2. Find 95% and 99% confidence intervals for the
population mean.
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The 95% confidence interval is given by

x̄± 2.262s/
√
n = 4.5± 2.262×

√
1.2√
10

= 4.5± 0.78

= (3.72, 5.28).

The 99% confidence interval is given by

x̄± 3.25s/
√
n = 4.5± 3.25×

√
1.2√
10

= 4.5± 1.13

= (3.37, 5.63)

Note we are using the following values from R:

> qt(0.975, 9)
[1] 2.262157
> qt(0.995, 9)
[1] 3.249836

1.8 P values
P values can be useful as a hypothesis test with a fixed significance level α does not give any
indication of the strength of evidence against the null hypothesis.

The P value depends on whether we have a one-sided or two-sided test.
Consider a one sided test of H0 : µ = µ0 versus H1 : µ > µ0. Assuming the population

variance is unknown so that we are using a t test the P value is

P (T > tobs)

where tobs is the observed value of t.
For H1 : µ < µ0 the P value is P (T < tobs).
For a two sided test with H1 : µ ̸= µ0 it is

P (|T | > tobs) = 2P (T > |tobs|).

In each case we can think of the P value as the probability of obtaining a value of the test
statistic more extreme than we did observe assuming that H0 is true. What is regarded as more
extreme depends on the alternative hypothesis. If the P value is small that is evidence that H0

may not be true.
It is useful to have a scale of evidence to help us interpret the size of the P value. There is

no agreed scale but the following may be useful as a first indication:

P value Interpretation
P > 0.10 No evidence against H0

0.05 < P < 0.10 Weak evidence against H0

0.01 < P < 0.05 Moderate evidence against H0

0.001 < P < 0.01 Strong evidence against H0

P < 0.001 Very strong or overwhelming evidence against H0

12



Note that the P value is the smallest level of significance that would lead to rejection of the null
hypothesis.

Example 1.7. For the gunpowder example the P value of the test is given by

P (T < −2.966) = P (T > 2.966) by symmetry

where T ∼ t7. From R we have

> pt(2.966, 7)
[1] 0.9895369

so P (T > 2.966) = 1− 0.9895 = 0.0105 and we have moderate evidence against H0.

1.9 Hypothesis tests and confidence intervals for a binomial success prob-
ability

Assume that we are operating in the large-sample regime, with n > 30, so that the normal
approximation can be used. First, we consider hypothesis testing and confidence intervals for
a binomial success probability, p. Recall that if X ∼ Binomial(n, p) then X = X1 + . . . +
Xn where Xi, i = 1, . . . , n, are independent and identically distributed Bernoulli(p) random
variables. Let x1, . . . , xn be the observed values of X1, . . . , Xn. Suppose we want to test
H0 : p = p0 versus an alternative. To do this, we can use the following test statistic

T =
X̄ − p0√

p0(1− p0)/n
(5)

which for sufficiently large n has an approximately N(0, 1) distribution. An (approximate)
100(1− α)% confidence interval for p can be constructed as

x̄± z1−α/2

√
x̄(1− x̄)/n. (6)

1.10 Hypothesis tests and confidence intervals for a Poisson mean
Now suppose X1, . . . , Xn is a random sample from the Poisson(λ) distribution with x1, . . . , xn

the observed values. Suppose we want to test H0 : λ = λ0 versus an alternative. This can be
done using the following test statistic

T =
X̄ − λ0√

λ0/n
(7)

which is approximately N(0, 1) when n is sufficiently large. An approximate 100(1 − α)%
confidence interval for λ can be constructed as

x̄± z1−α/2

√
x̄/n. (8)
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2 Goodness of Fit Tests
In this chapter we will consider the statistical question of deciding whether a sample of data
may reasonably be assumed to come from a particular distribution.

2.1 Goodness of fit tests for discrete random variables
Suppose we wish to test the hypothesis (or assumption) that a set of data follows a binomial
distribution with given parameters.

For example suppose we toss three coins and count the number of heads. We want to test
the hypothesis that a coin is equally likely to land head or tail. We do this 120 times and get
the following data

Heads 0 1 2 3
Observed frequency 10 35 54 21

Is there any evidence to suggest that the coin is not fair (ie. not equally likely to land head
or tail)?

Suppose it was equally likely. Then the number of heads in a single toss, assuming inde-
pendent trials, would have a binomial distribution with n = 3 and p = 1

2
. So writing Y as the

number of heads we would have P [Y = 0] = 1
8
, P [Y = 1] = 3

8
P [Y = 2] = 3

8
P [Y = 3] = 1

8
.

Thus in 120 trials our expected frequencies under a binomial model would be

Heads 0 1 2 3
Expected frequency 15 45 45 15

Now, our observed frequencies are not the same as our expected frequencies. But this might
be due to random variation. We know a random variable doesn’t always take its mean value.
But how surprising is the amount of variation we have here?

We make use of a test statistic X2 defined as follows

X2 =
k∑

i=1

(Oi − Ei)
2

Ei

,

where Oi are the observed frequencies, Ei are the expected frequencies and k is the number of
classes, or values that Y can take.

Now it turns out that if we find the value of X2 for lots of samples for which our hypothesis
is true it has a chi-squared distribution. We can calculate the value of X2 for our sample. If this
value is big, i.e. it is in the right tail of the χ2 distribution we might regard this as evidence that
our hypothesis or assumption is false. (Note if the value of X2 was very small we might regard
this as evidence that the agreement was “too good” and that some cheating had been going on.)
Since it is only values in the right tail that cast doubt on the null hypothesis these goodness of
fit tests are always one tailed tests.

14



In our example

X2 =
(10− 15)2

15
+

(35− 45)2

45
+

(54− 45)2

45
+

(21− 15)2

15

=
25

15
+

100

45
+

81

45
+

36

15

=
75 + 100 + 81 + 108

45

=
364

45
= 8.08

To use the chi-squared distribution we need the degrees of freedom, ν. For this goodness
of fit test ν = k − 1 where k is the number of categories. In this example, as k = 4 we have
ν = k − 1 = 3. We need to compute the p-value P (X2 > 8.08). We find this p-value in R as
follows,

> 1-pchisq(8.08, 3)
[1] 0.04438696

Thus the area to the right of 8.08 is 0.0444. This is quite a small value. It represents the
probability of obtaining an X2 value of 8.08 or more if we carry out this procedure repeatedly
on samples which actually do come from a binomial distribution with p = 0.5. This is the
p-value of the test. A p-value of 0.0444 gives moderate evidence against the hypothesis.

Alternatively, we can compute the rejection region. For example, for a significance level
α = 0.05, we find in R the following.

> qchisq(0.95,3)
[1] 7.814728

So the rejection region is {X2 : X2 > 7.815}. As 8.08 > 7.815, we reject the null hypothesis
that the data has a binomial distribution with p = 0.5 at the 5% significance level.

There are a couple of factors to complicate the goodness of fit test.

• If any of the expected frequencies (Ei) are less than 5 then we must group adjacent
classes so that all expected frequencies are greater than 5.

• If we need to estimate any parameters from the data then the formula for the degrees of
freedom is amended to read

ν = k − d− 1

where k is the number of classes and d is the number of parameters estimated from the
data.

We can illustrate both these ideas in the following example.

Example 2.1. It is thought that the number of accidents per month at a junction follows a
Poisson distribution. The frequency of accidents in 120 months was as follows

Accidents 0 1 2 3 4 5 6 7+
Observed frequency (Oi) 41 40 22 10 6 0 1 0

15



To find the Poisson probabilities we need the mean µ. Since this isn’t specified in the
question we will have to estimate it from the data. A reasonable estimate is the sample mean of
the data. This is

µ̂ =
0× 41 + 1× 40 + 2× 22 + · · ·+ 6× 1

120
= 1.2

Now using the Poisson formula

P [Y = y] =
e−µ̂µ̂y

y!

we can compute the probabilities in the following table

Accidents Probability Ei Oi

0 0.3012 36.14 41
1 0.3614 43.37 40
2 0.2169 26.03 22
3 0.0867 10.40 10
4 0.0261 3.13 6
5 0.0062 0.74 0
6+ 0.0015 0.18 1

Note that the probabilities have to add to one, so the last class is six or more. Note also
that this will mean the total of the expected frequencies must add to the total of the observed
frequencies. Check that this holds in each example.

The last three expected frequencies are all less than 5. If we group them together into a
class 4+ the expected frequency will be 4.05, still less than 5. So we group the last four classes
into a class 3+ with expected frequency 14.45 and observed frequency 17. We find X2 as
before.

X2 =
(36.14− 41)2

36.14
+

(43.37− 40)2

43.37
+

(26.03− 22)2

26.03
+

(14.45− 17)2

14.45
= 0.65 + 0.26 + 0.62 + 0.45

= 1.98

After our grouping there are four classes, k = 4, and we estimated one parameter, the mean
µ̂, from the data so d = 1. Thus ν = k − d− 1 = 4− 1− 1 = 2.

We can compute the p-value in R as follows.

> 1-pchisq(1.98, 2)
[1] 0.3715767

Such a large p-value shows no evidence against the hypothesis that the data have a Poisson
distribution. Alternatively, for a significance level α = 0.05, the rejection region is {X2 :
X2 > 5.991}, computed in R as follows

> qchisq(0.95,2)
[1] 5.991465

As 1.98<5.99, we cannot reject the hypothesis that the data have a Poisson distribution.

16



2.2 A goodness of fit test for a continuous random variable
Consider the following example.

Traffic is passing freely along a road. The time interval between successive vehicles is
measured (in seconds) and recorded below.

Time interval 0-20 20-40 40-60 60-80 80-100 100-120 120+
No. of cars 54 28 12 10 4 2 0

Test whether an exponential distribution provides a good fit to these data.

We need to estimate the parameter λ of the exponential distribution. Since λ−1 is the mean
of the distribution it seems reasonable to put λ = 1/x̄. Now the data are presented as intervals
so we will have to estimate the sample mean. It is common to do this by pretending that all
the values in an interval are actually at the mid-point of the interval. We will do this whilst
recognising that for the exponential distribution, which is skewed, it is a bit questionable.

The calculation for the sample mean is given below.

Midpoint x Frequency f fx
10 54 540
30 28 840
50 12 600
70 10 700
90 4 360

110 2 220
110 3260

thus the estimated mean is 3260/110 = 29.6. Thus we test if the data are from an exponential
distribution with parameter λ = 1/29.6.

We must calculate the probabilities of lying in the intervals given this distribution.

P [X < 20] =

∫ 20

0

λe−λxdx = −e−λx
∣∣20
0
=

= 1− e−20λ

= 0.4912

P [20 < X < 40] =

∫ 40

20

λe−λxdx

= e−20λ − e−40λ

= 0.2499

Similarly

P [40 < X < 60] = e−40λ − e−60λ = 0.1272

P [60 < X < 80] = e−60λ − e−80λ = 0.0647

P [80 < X < 100] = e−80λ − e−100λ = 0.0329

P [100 < X] = e−100λ = 0.0341

Multiplying these probabilities by 110 we find the expected frequencies as given in the table
below.
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Time interval 0-20 20-40 40-60 60-80 80-100 100+
Observed frequency 54 28 12 10 4 2
Expected frequency 54.03 27.49 13.99 7.12 3.62 3.75

We must merge the final two classes so that the expected values are greater than 5. Thus for
80+ we have 6 observed and 7.37 expected.

We find

X2 =
∑ (O − E)2

E
= 1.71.

Now ν = 5 − 1 − 1 = 3 since after grouping there were 5 classes and we estimated one
parameter from the data. From R the p-value is 0.6347 as follows.

> 1-pchisq(1.71,3)
[1] 0.6347129

Therefore, there is no evidence against the hypothesis that the data follows an exponential
distribution.

Example 2.2. 64 observations on a continuous random variable X gave the following fre-
quency table

Interval 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8
Frequency 0 2 7 7 8 11 16 13

Test the hypothesis that X has the pdf

f(x) =

{
x/32 0 ≤ x ≤ 8

0 otherwise

using the 5% significance level.
We see that

P (0 < X < 1) =

∫ 1

0

x

32
=

[
x2

64

]1
0

= 1/64

and

P (1 < X < 2) =

∫ 2

1

x

32
=

[
x2

64

]2
1

= 3/64

. We find the other probabilities similarly so we have

Interval 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8
Probability 1/64 3/64 5/64 7/64 9/64 11/64 13/64 15/64
Expected Frequency 1 3 5 7 9 11 13 15
Observed Frequency 0 2 7 7 8 11 16 13

We have to group so that the smallest class is 0 − 3 with observed and expected frequency
9. The observed value of X2 is 1.87. There are 6 − 0 − 1 = 5 degrees of freedom. We can
compute the rejection region in R as follows.

> qchisq(0.95,5)
[1] 11.0705

If we have a 5% significance level the rejection region is an observed value of X2 > 11.07.
Thus we cannot reject the null hypothesis that X has this pdf.
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3 Hypothesis tests for two samples
In this chapter we consider examples with two samples. We would want to test that two means
or two variances are equal.

3.1 Two independent samples - the two sample t test
Consider the situation where we have two independent samples and we want to test if they
come from the same population. In particular if they have the same mean. We shall use the
following notation.

We assume that the first sample X1, . . . , Xn1 is of size n1 and is normally distributed with
mean µ1 and variance σ2. We shall denote the sample mean and variance by X̄ and S2

1 . We
assume that the second sample Y1, . . . , Yn2 is of size n2 and is normally distributed with mean
µ2 and variance σ2. We shall denote the sample mean and variance by Ȳ and S2

2 . Note we are
assuming that the samples come from populations with the same variance.

We want to test the null hypothesis H0 : µ1 = µ2 against an alternative which is often two
sided H1 : µ1 ̸= µ2 but which could be one sided.

Because we are assuming the population variances are the same we estimate the variance
by what is called the pooled estimate of variance. This is

S2
0 =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
. (9)

It can be shown that in these circumstances the pooled estimate of variance is an unbiased
estimator of σ2. It can also be shown that

(n1 + n2 − 2)S2
0

σ2
∼ χ2

n1+n2−2,

since the denominator of the right hand side of (9) divided by σ2 is the sum of two independent
chi-squared random variables with degrees of freedom n1 − 1 and n2 − 1.

Note that if σ2 were known X̄ ∼ N(µ1, σ
2/n1) and Ȳ ∼ N(µ2, σ

2/n2) it follows that

X̄ − Ȳ ∼ N

(
(µ1 − µ2), σ

2(
1

n1

+
1

n2

)

)
since the samples are assumed independent. Thus

Z =
(X̄ − Ȳ )− (µ1 − µ2)

σ
√

1/n1 + 1/n2

∼ N(0, 1)

and so if σ2 were known we could base a test of µ1 = µ2 on the test statistic

Z =
X̄ − Ȳ

σ
√

1/n1 + 1/n2

which would have a N(0, 1) distribution if H0 were true.
Since σ2 is unknown we replace it by the pooled estimate S2

0 and as in the one sample case
the distribution changes from a normal to a t. The degrees of freedom are n1 + n2 − 2 since as
noted above the distribution of (n1 + n2 − 2)S2

0/σ
2 is χ2

n1+n2−2. Thus our test statistic is

T =
X̄ − Ȳ

S0

√
1/n1 + 1/n2

which has a tn1+n2−2 distribution if H0 is true.
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Example 3.1. Two random samples were independently drawn from two populations. The first
sample of size 6 had mean 49.5 and variance 280.3 and the second of size 5 had mean 64.4 and
variance 310.3. Is there evidence to indicate a difference in population means?

We are testing
H0 : µ1 = µ2 versus H1 : µ1 ̸= µ2

The test statistic is

T =
X̄ − Ȳ

S0

√
1/n1 + 1/n2

which has a tn1+n2−2 distribution if H0 is true.
The pooled estimate of variance is given by

s20 =
5× 280.3 + 4× 310.3

6 + 5− 2
= 293.63

so s0 = 17.14. The observed value of T is therefore

t =
49.5− 64.4

17.14
√

1
6
+ 1

5

= −1.40.

We can compare this value to a t9 distribution. The p value will be given by 2×P (T < −1.40).
From R we find

2*(pt(-1.4, 9))
[1] 0.1950286

so the p value is 0.195. So there is no evidence against H0.

Example 3.2. The mean reaction times, in hundredths of a second, of two groups of subjects
taking a flashing-light stimulus are given below. The first group consisted of subjects who
were new to the project while the subjects in the second group had taken part in previous
experiments. Test if experience has had an effect on the mean response at the 5% significance
level.

New 2.7 3.0 3.3 2.9 3.5 2.7 3.0 3.1 2.8 3.0
Experienced 2.7 2.5 3.0 2.7 2.6 2.5 2.9 2.7

We are going to assume that the data is normally distributed, and therefore that the response
time, X , of the new subjects is N(µ1, σ

2) and the response time, Y , of the experienced subjects
is N(µ2, σ

2). The null and alternative hypothesis are given by

H0 : µ1 = µ2 H1 : µ1 ̸= µ2

The test statistic is

T =
X̄ − Ȳ

S0

√
1/n1 + 1/n2

which has a tn1+n2−2 distribution if H0 is true.

n1 = 10, x̄ = 3.0, (n1 − 1)s21 = 0.58, s21 = 0.064

n2 = 8, ȳ = 2.7, (n2 − 1)s22 = 0.22, s22 = 0.031
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The pooled estimate of variance is given by

s20 =
0.58 + 0.22

10 + 8− 2
= 0.05

The observed value of T is therefore

t =
3.0− 2.7

√
0.05

√
1
10

+ 1
8

= 2.828.

We can compare this value to a t16 distribution. In R we obtain the following.

> qt(0.025,16)
[1] -2.119905

Therefore, the rejection region for a 5% significance test is |t| > 2.120 so we reject the null
hypothesis at the 5% level and conclude that experience does have an effect on the mean re-
sponse.

3.1.1 Confidence interval for the difference in means

If we are asked to estimate the difference in means between two independent normal samples
with the same variance we would also want the corresponding confidence interval. This is
given by

x̄− ȳ ± tn1+n2−2(1− α/2)s0

√(
1

n1

+
1

n2

)
.

Example 3.3. Compute a 95% confidence interval for the difference in means for the two
samples in Example 3.1.

In R we obtain the following.

> qt(0.025,9)
[1] -2.262157

Therefore, the confidence interval is computed as follows.

49.9− 64.4± 2.262× 17.14

(
1

6
+

1

5

)1/2

= −14.5± 23.48

= (−37.98, 8.98)

Example 3.4. Compute a 95% confidence interval for the difference in population means for
the data in Example 3.2.

The confidence interval is computed as follows.

3.0− 2.7± 2.120×
√
0.05

(
1

10
+

1

8

)1/2

= 0.3± 0.225

= (0.075, 0.525)

Note that 0 does not belong to the 95% confidence interval agreeing with our finding that we
could reject H0 at the 5% significance level.

For the two sample t-test we have to make the assumption that the population variances are
the same. Is this reasonable? In the next section we test this assumption.
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3.2 F test for comparing two variances
It is often desirable to compare two variances. To do this, we introduce the following theorem.

Theorem 3.1. If the random variables C1 and C2 are independent and C1 ∼ χ2
ν1

and C2 ∼ χ2
ν2

then
C1/ν1
C2/ν2

∼ F ν1
ν2

that is, the ratio follows an F-distribution with ν1 degrees of freedom and ν2 degrees of freedom.

We know that
(n1 − 1)S2

1

σ2
1

∼ χ2
n1−1

(n2 − 1)S2
2

σ2
2

∼ χ2
n2−1

and they are independent. Therefore, using the theorem above, it follows that

(n1−1)S2
1

σ2
1

/(n1 − 1)

(n2−1)S2
2

σ2
2

/(n2 − 1)
=

S2
1/σ

2
1

S2
2/σ

2
2

=
S2
1/S

2
2

σ2
1/σ

2
2

∼ F n1−1
n2−1

We can use this result to test a null hypothesis H0 : σ
2
1 = σ2

2 versus H1 : σ
2
1 ̸= σ2

2 . The test
statistic is

F =
S2
1

S2
2

and it can be shown that F ∼ F n1−1
n2−1 if H0 is true where F n1−1

n2−1 is an F distribution with
ν1 = n1 − 1 and ν2 = n2 − 1 degrees of freedom.

We can find the relevant percentage points by using R.
It is important to note that the validity of the F test relies heavily on the underlying popula-

tions of our samples being normally distributed. If they are not the results can be misleading.
If possible we should check the normality assumption using suitable plots and tests.

Example 3.5. Find the rejection region in terms of F if n1 = 6 and n2 = 11.
Using R we find

> qf(0.025, 5, 10)
[1] 0.1510767
> qf(0.975, 5, 10)
[1] 4.236086

So the rejection region is the set of observed F {F : F < 0.151 ∪ F > 4.236}.

Example 3.6. For the data in Example 3.1 the observed value of F is 280.3/310.3 = 0.9033.
Compute the rejection region for the test of H0 : σ

2
1 = σ2

2 versus a two-sided alternative
The rejection region is found as follows. Using R,

> qf(0.025, 5, 4)
[1] 0.1353567
> qf(0.975, 5, 4)
[1] 9.364471

so we would reject the null hypothesis if observed F < 0.135 or F > 9.364. Thus we are not
rejecting the null hypothesis for the purposes of the test on equality of means.

22



Example 3.7. Two random samples were independently drawn from two normal populations.
The first sample of size 13 had mean 9.5 and variance 93.3 and the second of size 11 had mean
14.0 and variance 25.2. Test the hypothesis that the populations have the same variance at the
5% significance level.

The observed value of F is 93.3/25.2 = 3.70. To carry out a test of H0 : σ2
1 = σ2

2 versus
a two-sided alternative the rejection region would be F > 3.621 or F < 0.296, as we can
compute in R as follows.

> qf(0.025, 12, 10)
[1] 0.2964234
> qf(0.975, 12, 10)
[1] 3.620945

Thus we reject the null hypothesis at the 5% significance level.

3.2.1 Confidence interval for the ratio of two variances

We can find a confidence interval for the ratio σ2
1/σ

2
2 . As seen in the previous section,

S2
1/S

2
2

σ2
1/σ

2
2

∼ F n1−1
n2−1

Therefore

P

(
F n1−1
n2−1 (.025) <

S2
1/S

2
2

σ2
1/σ

2
2

< F n1−1
n2−1 (.975)

)
= 0.95

Rearranging so that σ2
1/σ

2
2 is the subject, we have the 95% random interval

P

(
S2
1/S

2
2

F n1−1
n2−1 (.975)

<
σ2
1

σ2
2

< (
S2
1/S

2
2

F n1−1
n2−1 (.025)

)
= 0.95

Thus the 95% confidence interval for σ2
1/σ

2
2 is(

s21/s
2
2

F n1−1
n2−1 (.975)

,
(s21/s

2
2)

F n1−1
n2−1 (.025)

)
Example 3.8. For the data in Example 3.7 the 95% confidence interval for σ2

1/σ
2
2 is(

3.70

3.620945
,

3.70

0.2964234

)
= (1.022, 12.482).

This F test is often used to test whether two variances are equal before carrying out the t
test for two independent samples discussed in the previous section, as the equality of variances
is an assumption for the t test. If the null hypothesis of the F test is not rejected, one does not
have enough evidence to reject the hypothesis that the variances of the two samples are equal,
and therefore can carry out the t test. If the null hypothesis of the F test is rejected, one cannot
carry out the t test for two independent samples as the assumption of equality of variance for
the two samples is not satisfied.

So the next question is: what happens when one would like to test the difference in means
between two independent samples, but the null of hypothesis of equal variances is rejected by
an F test? This is indeed what happened in Examples 3.1 and 3.6. Since we cannot assume the
population variances are equal we cannot use the two sample t-test. We discuss this in the next
section.
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3.3 An approximate test when variances are unequal
If we want to test equality of two means when we know that the two samples have (known)
population variances, we can use the test statistic

Z =
X̄ − Ȳ√

σ2
1/n1 + σ2

2/n2

which would has a standard normal distribution if the null hypothesis is true. If the variances
are unknown, and we have rejected the hypothesis that they are equal, we can use the test
statistic

T ∗ =
X̄ − Ȳ√

S2
1/n1 + S2

2/n2

.

Unfortunately the distribution of T ∗ is not known exactly. We can, however, approximate it by
a t distribution with ν∗ degrees of freedom where

ν∗ =
(s21/n1 + s22/n2)

2(
s41/n

2
1

n1−1
+

s42/n
2
2

n2−1

) .

Note that in general ν∗ is not an integer.

Example 3.9. We saw in Example 3.7 that we could not assume that the population variances
were equal. We can test the equality of the population means using T ∗.

H0 : µ1 = µ2 versus H1 : µ1 ̸= µ2

The test statistic is

T ∗ =
X̄ − Ȳ√

S2
1/n1 + S2

2/n2

.

which has an approximate tν∗ distribution if H0 is true where

ν∗ =
(93.3/13 + 25.2/11)2(

93.32/132

12
+ 25.22/112

10

) = 18.6.

Note that

> qt(.975,18.6)
[1] 2.096075

The observed value of the test statistic is t∗ = −4.5/3.077 = −1.462. If we use a two sided
test with α = 0.05 the rejection region is {t∗ : |t∗| > 2.096} so we don’t reject H0 at the 5%
significance level.

There is some dispute about the use of this approximate t-test. Some books recommend
that it is always used, however close the sample variances, because the F test relies heavily on
normality. Others argue that the approximate test has lower power than the two sample test and
if the sample variances are close together it is better to use the two sample test. In this course
we will adopt the latter position, checking the equality of variances by the F test and only using
the approximate procedure if there is evidence against the variances being equal.

In practice unless the two sample variances are very different, in which case we will prob-
ably use the approximate test, the difference in answers between the two methods is minimal.

We can find the approximate confidence interval for the difference in means as

x̄− ȳ ± tν∗(1− α/2)

√(
s21
n1

+
s22
n2

)
.
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Example 3.10. For the data in Example 3.7 the approximate 95% confidence interval for µ1 −
µ2 is

−4.5± 2.096× 3.077 = −4.5± 6.45 = (−10.95, 1.95).

3.4 Matched pairs t-test
One of the assumptions we make in the two sample t-test is that the two samples are inde-
pendent. If they are not we can use another test called the matched pairs t-test. This test is
appropriate if measurements are taken of pairs of similar subjects. For example, we might have
pairs of twins, pigs from the same litter, a pair of measurements on the same individual or
pairs of patients who have been matched to be similar. We would expect the measurements on
such similar individuals to be similar. This violates the independence assumption needed for
a two sample t-test. How do we analyse such data? We find the differences for each pair and
then do a 1 sample t-test on the differences. We are assuming that the differences are normally
distributed with an unknown mean and variance. We test the null hypothesis that this mean is
zero.

Example 3.11. Sixteen patients sampled at random were matched by age and weight. One of
each pair were assigned at random to treatment A and the other to treatment B. A blood test of
a certain chemical produced the following results

A 14.0 5.0 8.6 11.6 12.1 5.3 8.9 10.3
B 13.2 4.7 9.0 11.1 12.2 4.7 8.7 9.6

Test whether there is a difference in the two treatments. Find a 90% confidence interval for the
mean difference in the treatments.

The differences are +0.8,+0.3,−0.4,+0.5,−0.1,+0.6,+0.2,+0.7. The mean difference
is d̄ = 0.325, the variance of the differences is s2d = 0.1707 so the standard deviation is
sd = 0.413. The null hypothesis is µd = 0 versus an alternative that µd ̸= 0. The test statistic
is

T =
d̄− µd

sd/
√
n
=

d̄
√
n

sd
which has a t distribution with 7 degrees of freedom if H0 is true. The observed value of
t = 2.226. In R we obtain

> pt(2.226,7)
[1] 0.9693341
> 1-pt(2.226,7)
[1] 0.0306659
> 2*(1-pt(2.226,7))
[1] 0.0613318
> qt(0.05,7)
[1] -1.894579

Comparing this with a t7 distribution P (t7 < 2.226) = .9692 so the p value is 2(1−0.9692) =
0.0616 so there is weak evidence against the null hypothesis.

A 90% confidence interval is of the form

d̄± t7(.95)
sd√
n

= 0.325± 1.895× 0.413√
8

= 0.325± 0.277

= (0.048, 0.602)
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What would be the conclusion if we had wrongly ignored the pairing? We would use a 2
sample t-test. The summary statistics for the two samples are

A B
n 8 8
Mean 9.475 9.15
Variance 10.16 9.93

The pooled estimate of variance is 10.047 so the observed value of the test statistic is

T =
9.475− 9.15

√
10.047

(
1
8
+ 1

8

)1/2 = 0.205

we are comparing with a t14 distribution. In R we find

> 2*(1-pt(0.205,14))
[1] 0.8405227

so the conclusion would be that there is no difference in means.

Such matching is a simple example of a designed experiment with blocking. Here we have
blocks of size 2 but in more complicated examples we might want, for example, to compare 5
animal feeds. We could do this using 5 animals from the same litter. It is important that biases
are not introduced into the experiment so we pay careful attention to allocating diets to animals
at random. If we are using the same person twice in a study, once with each treatment, it is
important to choose the order they receive the treatments randomly. With a drug treatment it
may be necessary to allow time between the two treatments so that the first drug is not still
affecting the subject when the second drug is taken. If the subject is a patient with a long term
illness requiring continuous treatment this could be a problem. In such a clinical trial it is also
important, if practically possible, that the patient receiving the treatment does not know which
treatment he is receiving and the doctor assessing their improvement also does not know as
again this might introduce biases. The whole subject of experimental design is a huge one in
its own right.

3.5 Test of two proportions
Suppose we have collected data in an opinion poll on whether the budget was good for the
country from men and women and we want to test the hypothesis that the proportions thinking
it was good are equal. Suppose we question n1 men and n2 women and x1 men and x2 women
say it was good. The estimate of the proportions thinking it was good will be p̂1 = x1/n1 and
p̂2 = x2/n2. We can estimate the difference in proportions by p̂1 − p̂2. To test the hypothesis
that the population proportions are equal H0 : p1 = p2 we need a test statistic with known
distribution if H0 is true. If n1 and n2 are large then by the central limit theorem the distribution
of p̂1 − p̂2 is normal. The variance of p̂1 − p̂2 is

p1(1− p1)

n1

+
p2(1− p2)

n2

.

To estimate this quantity note that if H0 is true then p1 = p2 = p and the best estimate of p is
p̂ = (x1 + x2)/(n1 + n2). Thus our test statistic is

Z =
p̂1 − p̂2√

p̂(1− p̂)
(

1
n1

+ 1
n2

)
which has a standard normal distribution if H0 is true.
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Example 3.12. Of 1000 men asked 450 thought the budget was good for the country and of 950
women 390 thought it was good. Test the hypothesis at the 5% level that the same proportion
of men and women thought it was good.

The null hypothesis is H0 : p1 = p2 against H1 : p1 ̸= p2.
p̂1 = 450/1000 = 0.45, p̂2 = 390/950 = 0.4105, p̂ = 840/1950 = .4308. The test statistic

Z given above has a standard normal distribution if H0 is true. The observed value of Z is

z =
0.45− 0.4105√

0.4308× 0.5692×
(

1
1000

+ 1
950

) = 1.759

In R we find

> qnorm(0.025)
[1] -1.959964

The rejection region is {z : |z| > 1.96} so we don’t reject H0.

The confidence interval for the difference in proportions is not quite what you would expect
from the test. Because we are not assuming that p1 = p2 we estimate the variance differently.
The 95% confidence interval is given by

p̂1 − p̂2 ± 1.96×

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

.

Example 3.13. For the opinion poll data the 95% confidence interval is given by

.45− .4105± 1.96

√
(.45)(.55)

1000
+

(.4105)(.5895)

950
= .0395± .0439

= (−0.0044, 0.0834)

As a proportion cannot be negative, the confidence interval becomes (0, 0.0834).

3.6 Comparing two correlation coefficients
Suppose we have data from two normally distributed random variables and we are interested in
their correlation ρ. The sample correlation is r. The quantity

Z ′ =
1

2
ln

[
1 + r

1− r

]
is approximately normally distributed with mean

1

2
ln

[
1 + ρ

1− ρ

]
and variance 1/(n − 3) where n is the number of pairs of observations from which r was
calculated. The approximation is only valid if n > 50. So

1
2
ln
[
1+r
1−r

]
− 1

2
ln
[
1+ρ
1−ρ

]
√

1/(n− 3)
∼ N(0, 1)
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Example 3.14. A correlation coefficient is calculated based on 84 pairs of observations. The
null hypothesis is that ρ = 0.5. Test this hypothesis if r = 0.34.

The alternative hypothesis is ρ ̸= 0.5. The observed value of Z ′ is 0.5 ln(1.34/0.66) =
0.3541. Also 0.5 ln(1.5/0.5) = 0.5493 and

√
1/(84− 3) = 0.1111. So if the null hypothesis is

true Z ′ has a normal distribution with mean 0.5493 and standard deviation 0.1111. Therefore
our test statistic (Z ′ − 0.5493)/0.1111 will have a N(0, 1) distribution. The observed value
of the test statistic is (0.3541 − 0.5493)/0.1111 = −1.76 which is not significant at the 5%
significance level. So we cannot reject the null hypothesis.

We can easily extend this idea to comparing two correlation coefficients. Again we assume
the underlying distributions are normal.

Example 3.15. The correlation coefficient between X , the mathematics mark, and Y the sci-
ence mark in Year 10 classes in a large school is 0.67 for a group of 75 boys and 0.42 for a
group of 63 girls. Test the hypothesis that the true correlation coefficient in the whole popula-
tion of Year 10 girls is the same as that in the population of year 10 boys.

We have a null hypothesis that says that ρ1 = ρ2 so Z ′
i will have the same mean in each

population. So we test the null hypothesis that Z ′
1 − Z ′

2 has mean 0. Assuming independence
of the two samples

Var[Z ′
1 − Z ′

2] = Var[Z ′
1] + Var[Z ′

2]

=
1

75− 3
+

1

63− 3
= 0.0306.

The observed values of z′1 and z′2 are z′1 = 0.5 ln(1.67/0.33) = 0.8107 and z′2 = 0.5 ln(1.42/0.58) =
0.4497. So the test statistic

(Z ′
1 − Z ′

2)− 0√
Var[Z ′

1 − Z ′
2]

will be N(0, 1) if H0 is true. The value is

0.8107− 0.4497√
0.0306

=
0.3610

0.1749
= 2.064

and we can reject the null hypothesis of equal correlations at the 5% significance level.
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4 Contingency tables
If our data consist of two categorical variables we form a contingency table. We are often
interested in whether there is some form of association or lack of independence between the
two variables. Exactly what form this association takes depends on the way we collect the data.

For example consider the following:

Example 4.1. 227 randomly selected males were classified by eye and hair colour

Eye colour
Hair colour Brown Green/grey Blue Total
Black 10 24 8 42
Brown 16 41 26 83
Fair/Red 5 32 65 102
Total 31 97 99 227

Note that in this example we selected 227 males at random and then classified them accord-
ing to hair and eye colour. Apart from the grand total of 227 none of the other entries in the
table were fixed. We may ask if there is an association, or lack of independence, between the
two factors (hair colour and eye colour). Do the proportions (or probabilities) of the three eye
colours differ among the sub-populations comprising the three hair colours? Equivalently do
the proportions (or probabilities) of the three hair colours differ among the three eye colours?
To answer this question we need a test of INDEPENDENCE.

Compare this with the following example.

Example 4.2. A survey of smoking habits in a sixth form sampled 50 boys and 40 girls at
random and the frequencies were noted in the following table.

Smoking
None Light Heavy Total

Boys 16 20 14 50
Girls 24 10 6 40
Total 40 30 20 90

In this example we chose to sample 50 boys and 40 girls. Before we classified their smoking
habits we knew that the row totals would be 50 and 40. We want to know if there is a difference
between the sexes. We are comparing two distributions (over smoking habits) so the test is one
of SIMILARITY or HOMOGENEITY. The hypothesis we are testing is that the population
proportions of boys and girls in each smoking category are the same.

The method of sampling is important and that this determines the hypothesis that we want to
test. However it turns out that whatever the method of sampling the method we use to analyse
the contingency table is the same. As with goodness of fit problems we find the Expected
frequencies under the null hypothesis, calculate X2 and compare this to an appropriate χ2

value.
Consider the hair and eye colour example. The null hypothesis is that

P (eye colour and hair colour) = P (eye colour)× P (hair colour).

We can estimate P (brown eyes), for example, by the number of people with brown eyes di-
vided by the total number of people (31/227). Similarly we can estimate P (black hair) by the
total number of people with black hair divided by the total number of people (42/227). So
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if the hypothesis of independence is true P (brown eyes and black hair) will be estimated by
(31/227) × (42/227) and we would expect the number of people in our sample with brown
eyes and black hair to be 227× (31/227)× (42/227). Similarly the expected number of people
in our sample with a particular combination of hair colour and eye colour if the hypothesis of
independence is true will be

Ek = n× Row total/n× Column total/n

=
Row total × Column total

overall sample size (n)

Using this rule the table of expected frequencies is as follows:

Eye colour
Hair colour Brown Green/grey Blue Total
Black 5.74 17.95 18.32 42
Brown 11.33 35.47 36.20 83
Fair/Red 13.93 43.59 44.48 102
Total 31 97 99 227

We calculate X2 as before as

X2 =
k∑

i=1

(Oi − Ei)
2

Ei

where the sum is over all the cells of the contingency table.
The number of degrees of freedom is

ν = (no. of rows − 1)(no. of columns − 1).

Basically given the row and column totals we only need to know the values of ν cells in the
table to determine the rest.

As before X2 ∼ χ2
ν under the null hypothesis of independence and a large value of X2

gives evidence against the hypothesis.
Here X2 = 34.9 on ν = (3 − 1) × (3 − 1) = 4 degrees of freedom. The P value is

P (X2 > 34.9). From R we find

> 1-pchisq(34.9, 4)
[1] 4.870322e-07

so there is overwhelming evidence against the hypothesis that hair colour and eye colour are
independent.

Consider now the smoking example. Since the row totals are fixed, under the hypothesis of
similarity the row proportions or probabilities are the same for each row. It follows that

Ek

Row total
=

Column total
n

or
Ek =

Row total × Column total
n

Using this rule the table of expected frequencies is as follows:
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Smoking
None Light Heavy Total

Boys 22.22 16.67 11.11 50
Girls 17.78 13.33 8.89 40
Total 40 30 20 90

For the example we find that X2 = 7.11. The degrees of freedom is (2 − 1)(3 − 1) = 2.
Using R we find

> 1-pchisq(7.11, 2)
[1] 0.02858137

Hence there is moderate evidence against the hypothesis of similarity, moderate evidence that
smoking habits differ between the boys and girls.

As we saw with the goodness of fit test X2 will only have a well approximated χ2 distri-
bution if all the Ek > 5. It may be possible to group rows or columns to achieve this if one of
the variables is ordinal (e.g. smoking habits) but if it both are categorical any such grouping
is arbitrary. In the case of contingency tables we will relax our condition to say that not more
than 20% of the cells of the table should have Ek < 5 and none should have Ek < 1.

4.1 2 × 2 contingency tables
For 2 × 2 tables we can find a formula for the value of X2 in terms of the entries in the table.
If the table is

Presence Absence Total
Group 1 a b a+ b
Group 2 c d c+ d
Total a+ c b+ d n

Then

X2 =
n(ad− bc)2

(a+ b)(c+ d)(a+ c)(b+ d)
.

Example 4.3. Two areas of heathland are examined; in the larger area 66 sampling units are
examined and 58 of them contain a particular species of heather, while in the smaller area 22
units are examined and 12 of these contain that species. Is the species occurring at the same
density over the two areas?

The null hypothesis is that the proportion of units containing the species is the same in the
two areas. The 2× 2 table obtained from these data is

Presence Absence Total
Area 1 58 8 66
Area 2 12 10 22
Total 70 18 88

The value of X2 according to the formula is

X2 =
88(58× 10− 8× 12)2

66× 22× 70× 18
= 11.26

From R we find

31



> 1-pchisq(11.26, 1)
[1] 0.0007919521

so the P value is 0.000791952 so we have very strong evidence against the null hypothesis.

For 2 × 2 tables where any of the entries are at all small we should really apply Yates’
correction. We do this by modifying the formula for X2 to

X2 =
∑ (|Oi − Ei| − 0.5)2

Ei

.

Consider the heathland example. The table of expected frequencies is

Presence Absence Total
Area 1 52.5 13.5 66
Area 2 17.5 4.5 22
Total 70 18 88

So using Yates’ correction we find X2 = 9.312 and from R we find

> 1-pchisq(9.312, 1)
[1] 0.002276578

concluding that the p value is now 0.002276578. This is still strong evidence against the null
hypothesis but the value of X2 has reduced considerably and in another example might have a
more important effect.
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