MTH5129 Probability & Statistics II Coursework 7

- 1. Let X be the number of pounds of butterfat produced by a Holstein cow during the 305 day milking period following the birth of a calf. A random sample of 25 such cows gave the following values of X. Assume the distribution of X is $N(\mu, \sigma^2)$
 - 425 710 661 664 732 714 934 761 744
 - 653 725 657 421 573 535 602 537 405
 - 874 791 721 849 567 568 975

We wish to test the null hypothesis $H_0: \sigma^2 = 140^2$ against the alternative hypothesis $H_1: \sigma^2 > 140^2$.

- a) Give the test statistic, its distribution if H_0 is true and a rejection region for a test with significance level $\alpha = 0.05$.
- b) Calculate the value of the test statistic and state your conclusion.
- 2. Let X_1, X_2, \ldots, X_{23} be a random sample from a normal distribution with variance $\sigma^2 = 100$. Let S^2 be the sample variance. Find the variance of S^2 .

Hint: Remember that if $W \sim \chi^2_{\nu}$ then $Var[W] = 2\nu$

- 3. Articles produced by a manufacturer are designed to have mean length 5cm and standard deviation 0.06cm. A sample of size 16 from a batch of production has $\bar{x} = 4.96$ cm. and sample standard deviation s = 0.09cm. Assume the lengths are normally distributed.
 - a) Test the hypothesis that the mean length is 5cm against an alternative that it is less than 5cm with significance level $\alpha = 0.025$.
 - b) Find the P-value for the test. What is the conclusion?
 - c) Find a 95% confidence interval for the population mean.
 - d) Test the hypothesis that the population variance is 0.06^2 against a two sided alternative with $\alpha = 0.05$.
 - e) Find the P-value for the test. What is the conclusion?
 - f) Find a 99% confidence interval for the population variance.
- 4. Suppose z_1, z_2, \ldots are the observed values of independent standard normal random variables so that $z_1, z_2, \ldots z_n$ would be the observed values of a random sample of size n from a standard normal distribution.
 - a) If I calculated $v = \sum_{i=1}^{m} z_i^2$ what distribution would v be an observed value from?
 - b) If I then calculated the value of

$$u_1 = \frac{z_{m+1}}{\sqrt{v/m}}$$

what distribution would u_1 be an observed value from?

c) In (b) could I have calculated the value of

$$u_2 = \frac{z_1}{\sqrt{v/m}}$$

to achieve the same result? Explain your answer.