
MTH5001 Introduction to Computer Programming - Lecture 1a

Module organisers Dr. Lennart Dabelow and Prof. Thomas Prellberg
Lecture times

Tue, 11:00-12:00, PP: Great Hall
Fri, 12:00-13:00, PP: Great Hall (*)

(*) Note that because of Good Friday one lecture will be moved to week 7

Tue, March 5 10:00-11:00, PP: Great Hall

IT Lab sessions

Wed, 09:00-11:00, Bancroft: 1.15a PC Lab (Group 1) (**)
Thu, 09:00-11:00, Bancroft: 1.23 PC Lab (Group 2) (**)
Thu, 11:00-13:00, Bancroft: 1.23 PC Lab (Group 3) (**)
Thu, 15:00-17:00, Queens: QB-212 PC Lab (Group 4) (**)
Tue, 12:00-14:00, Queens: QB-202 PC Lab (Group 5)
Tue, 14:00-16:00, Bancroft: 1.15a PC Lab (Group 6)

(**) Note that as some PC Labs will not be available in week 8, there will be alternate Lab sessions in week 7/8 as follows

Tue, March 5, 13:00-15:00, Bancroft: 1.15a PC Lab (Group 1)
Tue, March 5, 15:00-17:00, Bancroft: 1.23 PC Lab (Group 2)
Wed, March 12, 09:00-11:00, Queens: QB-202 PC Lab (Group 3)
Wed, March 6, 10:00-12:00, Bancroft: 1.15a PC Lab (Group 4)

"Office Hours" will be in the Learning Cafe:

Thomas Prellberg: Thursday 14:00-15:00
Lennart Dabelow: Thursday 14:00-15:00

Assessment: Two tests in week 7 and 12 (10% each), Report (80%)

Indicative Structure of the Module
Week 1: Introduction to Jupyter Notebook and Python
Week 2: Numbers and Variables
Week 3: Sequences, Lists, and Arrays
Week 4: Functions
Week 5: Logic
Week 6: Loops
Week 7: First In-term Test
Week 8: Application 1: Root Finding
Week 9: Application 2: Linear Algebra
Week 10: Application 3: Python Data Analysis Library
Week 11: Application 4: Statistical Plotting with Seaborn
Week 12: Second In-term Test, Project preparation



The purpose of the Labs and Lectures

While there will be lectures introducing you to programming concepts, there is not enough time in the lectures to cover everything. The exercises in the tutorials will have some element of self-paced learning: we will
introduce some new material which needs to be worked through independently, supported by tutorial helpers who will always be happy to answer specific questions.

The Python Programming Language

The computer language chosen for this module is Python (http://www.python.org), more specifically Python 3. You should aim to work with Python version 3.9 or higher (but definitely not Python 2!).

The book A Beginner's Guide to Python 3 Programming by John Hunt is available for free at the library as an ebook
(https://search.library.qmul.ac.uk/iii/encore/record/C__Rb1674165__SA%20Beginner%27s%20Guide%20to%20Python%203%20Programming__Orightresult__U__X7?lang=eng&suite=def).

Jupyter Notebook

Throughout this module, all lecture notes (including these ones) will be written as Jupyter Notebooks (http://jupyter.org). Jupyter Notebooks are interactive applications that can be used to write documents with embedded
code, hyperlinks and images.

Jupyter Notebooks are composed of cells that can be highlighted and edited. For instance, try highlighting this cell by clicking on it. Notice that the cell has been highlighted in blue. This means that it is in Command Mode.
Cells can be navigated in command mode by clicking on them with the cursor, or by using the Up and Down keys.

Cells can also be edited by changing from Command Mode to Edit Mode. This can be achieved by double-clicking on a cell, or by pressing the Enter key on any cell already highlighted in Command Mode. Try entering
Edit Mode on this cell by double-clicking it, you should notice that it is now highlighted in green.

You can return from edit mode back to Command Mode by pressing the Escape key. This should be visible as the green highlighting turning back to blue.

Text Boxes (markdown)

When changing from Command Mode to Edit Mode, you may notice that some text now appears strange. For instance, hyperlinks are now written in square brackets and have the website address explicitly written after
them. This is because text boxes are written in a language called markdown (http://daringfireball.net/projects/markdown/).

Markdown is what allows us to embed hyperlinks and images into these documents. We may also use a combination of asterisks to write in italics, in bold or in both. (change this box to edit mode to see how this is
done).

Markdown allows us to write and edit documents similar to this one, but learning it is not essential for this course. If, however, you want to write nicer looking notebooks, feel free to look at the markdown tutorial
(http://www.markdowntutorial.com).

You may have realised that when you press Escape to leave Edit Mode, the text is still written in Markdown code, and has not returned to its normal state. This is because the cell must first be run for the Markdown to
render correctly. Try this by pressing the 'Run' button on the overhead menu.

http://www.python.org/
http://www.python.org/
https://search.library.qmul.ac.uk/iii/encore/record/C__Rb1674165__SA%20Beginner%27s%20Guide%20to%20Python%203%20Programming__Orightresult__U__X7?lang=eng&suite=def
https://search.library.qmul.ac.uk/iii/encore/record/C__Rb1674165__SA%20Beginner%27s%20Guide%20to%20Python%203%20Programming__Orightresult__U__X7?lang=eng&suite=def
http://jupyter.org/
http://jupyter.org/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://www.markdowntutorial.com/
http://www.markdowntutorial.com/


Code Boxes

As well as cells containing text, these documents will also feature cells that run code. Note that these cells are not just for displaying code, they can actually run it. For example, the cell beneath this one is a code box, try
running it by highlighting it in command mode and pressing 'Run' on the overhead menu.

In [1]:

executed in 14ms, finished 20:15:27 2024-01-16

As well as pressing 'Run' in the overhead menu, cells can be run by holding Shift and pressing Enter (this is true for both code and text boxes).

One final note regarding Jupyter Notebooks. There are many more useful keyboard shortcuts that could help speed-up your work. Select Help > Keyboard Shortcuts  from the menu or press the H key to bring up a
list of them (but make sure you are in Command Mode first).

Using Python as a calculator

To start with, we will use Python as a simple calculator, using

Python Operator Description

+ addition

- subtraction

* multiplication

/ division

** power

In [2]:

executed in 9ms, finished 20:15:27 2024-01-16

In [3]:

executed in 5ms, finished 20:15:27 2024-01-16

In [4]:

executed in 6ms, finished 20:15:27 2024-01-16

Nicely done!

Out[2]: 2

Out[3]: 15.142857142857142

Out[4]: 1024

# This is a code box!  Try running it using the Run button in the overhead menu.
​
print('Nicely done!')

# this box contains Python code for computing 1+1
# note the hash sign (#) which allows text comments in code boxes
1+1

# some more code, making Python look like a calculator
3*5+1/7

# ** is used for 'to the power of'
2**10

1
2
3

1
2
3

1
2

1
2



The math module (and other modules)

For more mathematics, we need to import special modules. Basic maths uses the module math. Other useful modules are NumPy, SciPy, and for graphing Matplotlib, but we will come back to that later.

In [5]:

executed in 4ms, finished 20:15:27 2024-01-16

In [6]:

executed in 6ms, finished 20:15:27 2024-01-16

In [7]:

executed in 6ms, finished 20:15:28 2024-01-16

Showcasing some advanced examples

The following examples are supposed to get you interested. They show how easy it is to use Python to help you with mathematical problems.

In [17]:

executed in 535ms, finished 20:15:28 2024-01-16

A simple example: plotting 𝑦 = 𝑓(𝑥)

We can graph one or several functions. This works just like you learned to plot graphs in school (https://thirdspacelearning.com/gcse-maths/algebra/types-of-graphs/): produce a table of  and  values, and connect the
points.

𝑥 𝑦

Out[6]: 3.141592653589793

Out[7]: -1.0

# this does not work
#pi

# but this does
import math
math.pi

# don't forget to prepend the module name before the function
math.cos(math.pi)

#first, import the needed modules (details will come later)
import numpy
import matplotlib.pyplot as plt # note the abbreviation to plt

1
2

1
2
3

1
2

1
2
3

https://thirdspacelearning.com/gcse-maths/algebra/types-of-graphs/
https://thirdspacelearning.com/gcse-maths/algebra/types-of-graphs/


In [18]:

executed in 149ms, finished 20:15:28 2024-01-16

This displayed a graph of the -function on the interval . We can easily plot a second function by simply adding two new lines of code.sin [0, 2𝜋]

xvals = numpy.arange(0, 2*math.pi, 0.01) # define x values for plotting
yvals = numpy.sin(xvals) # generate corresponding y values by evaluating the function sin at the given x values
plt.plot(xvals, yvals) # create a line plot with yvals against xvals
plt.xlabel("x") # add some labels to the axes
plt.ylabel("y")
plt.show() # display the resulting figure

1
2
3
4
5
6



In [19]:

executed in 139ms, finished 20:15:28 2024-01-16

There is so much more we can do. You don't really need to understand the next examples for now, they are just given to show you the potential of Python.

An advanced example: creating histograms from randomly generated data

We can generate randomly distributed data and produce a histogram.

xvals = numpy.arange(0, 2*math.pi, 0.01)
yvals = numpy.sin(xvals)
plt.plot(xvals, yvals)
yvals2 = numpy.cos(xvals) # add new yvals by evaluating the function cos at x values
plt.plot(xvals, yvals2) # add second line plot with new yvals
plt.xlabel("x")
plt.ylabel("y")
plt.show()

1
2
3
4
5
6
7
8



In [20]:

executed in 227ms, finished 20:15:29 2024-01-16

An advanced example: plotting 𝑧 = 𝑓(𝑥, 𝑦)

And finally, a more advanced example. Here we want to understand the function

We will do a three-dimensional plot and a contour plot.

𝑓(𝑥, 𝑦) = (1 − + + ) exp(− − )
𝑥

2
𝑥5 𝑦3 𝑥2 𝑦2

First, we define the function - you won't yet know how to do this, but you can likely recognize the function given above in the code below.

In [21]:

executed in 4ms, finished 20:15:29 2024-01-16

Next, it gets a bit harder, as we need to create a grid of  and  values for plotting. We'll use some fancy function for this, numpy.meshgrid() , without worrying too much about what this does.𝑥 𝑦

# generating data of a normal distribution and plotting the histogram
data = numpy.random.randn(1000000) # create a million randomly distributed numbers drawn from the normal distribution
plt.hist(data, bins=100) # collect the data into a histogram with a given number of bins and plot
plt.xlabel('x')
plt.ylabel('count')
plt.show()

# define the function - I haven't told you yet how 'def' works, but don't worry
def f(x,y):
    return (1-x/2+x**5+y**3)*numpy.exp(-x**2-y**2)

1
2
3
4
5
6

1
2
3



In [22]:

executed in 12ms, finished 20:15:29 2024-01-16

Having prepared an (x,y) grid and evaluated the function at all points in the grid, we can now produce the desired plots.

First the 3d plot 𝑧 = 𝑓(𝑥, 𝑦)

In [23]:

executed in 368ms, finished 20:15:29 2024-01-16

Finally, a contour plot.

# create an (x,y) grid
n = 256
x = numpy.linspace(-3,3,n) # linspace is an alternative to arange for producing x values
y = numpy.linspace(-3,3,n)
X,Y = numpy.meshgrid(x,y) # this is some magical code that hides lots of details...
Z = f(X,Y)                # ... but it enables us to simply write Z=f(X,Y) to compute all in one fell swoop!

ax = plt.axes(projection='3d')
ax.plot_surface(X,Y,Z)
plt.show()

1
2
3
4
5
6

1
2
3



In [24]:

executed in 133ms, finished 20:15:29 2024-01-16

You can presumably see the corresponding local maxima separated by a saddle, and a clearly visible local minimum. Is there another minimum nearby?

Conclusion and Outlook

I have started with describing the environment in which we shall learn programming. The programming language Python is simply our tool of choice, we could easily have used C, C++, Java, or similar. I should warn you
that the final examples in this brief introduction mainly aim to convince you that Python is relatively easy to use. They show how to use existing high-level routines to help you solve tasks, but they do not show what
Programming really is.

In the next lecture we will discuss numerical data types and variables.

plt.contourf(X, Y, Z)
plt.show()

1
2


