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Question 1 (24 marks). Consider the time series model

Xij = mij + sj + Yij,

where s0, s1, . . . , sd−1 is a seasonal component such that
∑d−1

j=0 sj = 0, mij is the
value of the deterministic trend in the j-th time step (j = 0, 1, ..., d− 1) of the i-th
period (i = 0, 1, 2, ...), and {Yij} is a white noise sequence with zero mean and
variance σ2.

(a) Assume that the trend is constant in each period, i.e., mij = mi for all j.
Show that the estimator

m̂i =
1

d

d−1∑
j=0

Xij

is unbiased. [8]

(b) Show that the seasonal estimators

ŝj =
1

n

n−1∑
i=0

(Xij − m̂i), j = 0, 1, . . . , d− 1,

satisfy the model constraint
∑d−1

j=0 ŝj = 0. [8]

(c) Assume mi is linear, i.e., mi = a0 + a1i. Show that both the trend and the
seasonality can be eliminated using difference operators. Express the
resulting filter in terms of the operator∇, then express the same filter in
terms of the backward shift operator B. [8]
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Question 2 (26 marks). Consider the time series whose sample autocorrelation
function (ACF) and sample partial autocorrelation function (PACF) are given by
Figure 1a and 1b, respectively.

(a) Classify the time series within the ARMA(p, q) family (i.e., estimate p and
q). Explain your choice. [5]

(b) Consider the time series model Xt = φXt−1 +Zt + θZt−1, where φ and θ are
real constant parameters, with |φ| < 1, φ 6= θ and Zt ∼ WN(0, σ2). Is it
plausible that the sample ACF and PACF in Figure 1a and 1b are generated
by a realisation of this model? Justify your answer. [5]

(c) Prove that Xt = φXt−1 + Zt + θZt−1 is invertible when |θ| < 1. [8]

(d) Define the PACF.

For the AR(1) model Xt = φXt−1 + Zt calculate the partial autocorrelation
coefficient for lag τ = 1. [8]
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(a) Sample ACF for Question 2.
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(b) Sample PACF for Question 2.
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Question 3 (14 marks). Consider the causal AR(2) time series model
Xt = φ1Xt−1 + φ2Xt−2 + Zt, where φ1 and φ2 are real constants and {Zt} is a
WN(0,σ2) sequence.

(a) Can the time series model for Xt be inverted? If it can, obtain the inverse
model. Otherwise, explain briefly why it is not possible to compute an
inverse model. [4]

(b) Since {Zt} is white with variance σ2 and {Xt} is causal, for any
1-step-ahead predictor X̂t the prediction error must be E[(Xt − X̂t)

2] > σ2.
Using this property, prove that the best linear predictor

X̂t =
t−1∑
i=1

βiXt−i

is given by β1 = φ1, β2 = φ2 and βk = 0 for k = 3, 4, .... [10]

Question 4 (22 marks). We have been given time series data x1, x2, ..., xn that can
be modelled by means of an AR(2) process

Xt = φ1Xt−1 + φ2Xt−2 + Zt,

where {Zt} is white noise with variance σ2.

(a) Give the Yule-Walker equations that relate the model parameters (φ1, φ2 and
σ2) with the autocorrelation coefficients ρ(τ). [8]

(b) We compute the sample ACVF and the sample ACF of the time series data,
which yield estimates

γ̂(0) = 2, ρ̂(1) =
1

2
, ρ̂(2) = −1

4
.

Compute estimates for φ1, φ2 and σ2. [6]

(c) If n = 100, give (approximate) 95% confidence intervals for the parameters
φ1 and φ2.

Hint: Simply write φ̂1 and φ̂2 for the parameter estimates if you have not
found numerical values in (b). Also recall that, if U is a normal random
variable with 0 mean and unit variance, then P(|U | > uα) = α = 0.95 for
uα ≈ 1.96. [8]
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Question 5 (14 marks). Assume you want to fit an ARIMA(p, d, q) model to
represent some time series data {xt}t=1,2,...,n that you have been given.

(a) Give the definition of a general ARIMA(p, d, q) model. [5]

(b) Explain briefly how you would fit the parameter d in the model. [5]

(c) Assume d = 2, p = 1 and q = 2 have been fitted. Write down an explicit
model for the resulting ARIMA(1,2,2) model using polynomials of the
backward shift operator B. [4]

End of Paper.
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