Main Examination period 2023 - January - Semester A

## MTH5104: Convergence and Continuity

## Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;


## Examiners: Claudia Garetto, Navid Nabijou

## Question 1 [25 marks].

(a) Prove that the equation

$$
x^{4}=x+1
$$

does not have any rational solution.
(b) Let

$$
A=\left\{\frac{n^{2}-1}{n^{3}-1}: n \in \mathbb{N}, n \neq 1\right\}
$$

(i) Prove that $A \subseteq \mathbb{R}$ is bounded.
(ii) Prove that inf $A=0$. Can you replace inf with min? Justify your answer.
(iii) Let $B$ be a bounded from above subset of $\mathbb{R}$. Prove that $-B+A$ is bounded from below.

## Question 2 [25 marks].

(a) Let $\left(a_{n}\right)$ be an increasing sequence of real numbers bounded from above and $\left(b_{n}\right)$ be a decreasing sequence.
(i) Is $\left(a_{n} b_{n}\right)$ necessarily convergent? Justify your answer.
(ii) Prove that if in addition $b_{n} \geq 1$ for all $n \in \mathbb{N}$ then the sequence $\left(a_{n} b_{n}^{-1}\right)$ is convergent.
(b) Let $\left(a_{n}\right)$ be the sequence defined recursively by

$$
\begin{aligned}
a_{1} & =\sqrt{3} \\
a_{n} & =\sqrt{2 a_{n-1}+3}, \quad n \geq 2 .
\end{aligned}
$$

(i) Prove that $\left(a_{n}\right)$ is bounded.
(ii) Prove that $\left(a_{n}\right)$ is increasing.
(iii) Making use of (i) and (ii) prove that the sequence $\left(a_{n}\right)$ is convergent and compute its limit.

## Question 3 [25 marks].

(a) Decide whether the following series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, conditionally convergent or divergent. Carefully justify your answer.
(i)

$$
\begin{equation*}
a_{n}=\frac{\sin n}{(n+2)(n+3)}+\frac{2^{n}+5^{n}}{2^{n}+9^{n}} \tag{7}
\end{equation*}
$$

(ii)

$$
a_{n}=(-1)^{n} \frac{1}{\sqrt{\sqrt{n}+4}} .
$$

(b) (i) Find the radius of convergence $R$ of the series

$$
\sum_{n=0}^{\infty}(-2)^{n} n^{4}(x-1)^{n}
$$

(ii) What can you say for the series (i) when $x=1 \pm R$ ? Justify your answer.

## Question 4 [25 marks].

(a) Prove that the equation

$$
x+\ln (\sin (x)+2)=1
$$

has a solution $x \in \mathbb{R}$.
(b) Can you find a continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that for all $c>0$ there exists $x \in[0,1]$ such that

$$
|f(x)|>c ?
$$

Justify your answer.

## End of Paper.

