
Proof by induction

Proof by induction is a useful method for proving a statement P(n) depending
on a positive integer n.

Two steps:

Base case: Prove that P(1) is true.

Inductive step: Prove that if P(n − 1) ⇒ P(n) for every n ⩾ 2.
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Example of a proof by induction

Theorem: Suppose n is a positive integer. Then 8n − 3n is divisible by 5.

Proof: We use induction.
Let P(n) denote the statement “8n − 3n is divisible by 5”.

↑
Very helpful to give a name to the statement you’re trying to prove

Base case: P(1) says that 8 − 3 is divisible by 5, which is true.
Inductive step: Suppose n ⩾ 2 and that P(n−1) is true. Then

8n−1 − 3n−1 = 5k for some integer k . So

8n − 3n =

8 × 8n−1 − 3 × 3n−1

= 8 × (5k + 3n−1)− 3 × 3n−1 (using P(n−1))

= 5 × (8k + 3n−1)

which is divisible by 5. So P(n) is true.
So by induction P(n) is true for all n.
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Proof by strong induction

Strong induction is a more powerful technique.
Base case: Prove that P(1) is true.
Inductive step:

Prove that if n ⩾ 2 and P(1),P(2), . . . ,P(n − 1)
are all true, then P(n) is true.

Why does it work?

P(1)

true by the base case

P(2)

true by the inductive step because P(1) is true

P(3)

true by the inductive step because P(1),P(2) are true

P(4)

true by the inductive step because P(1),P(2),P(3) are true

...

...
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Strong induction

Fibonacci sequence: Define F1,F2,F3, . . . by

F1 = F2 = 1, Fn = Fn−1 + Fn−2 for n ⩾ 3.

Theorem 3.6: Fn < 2n for all n.

Proof: Let P(n) denote the inequality Fn < 2n.
Base case: There are two base cases.

P(1) says 1 < 21, which is true.
P(2) says 1 < 22, which is true.
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Strong induction

Theorem 3.6: Fn < 2n for all n.

Inductive step: Suppose n ⩾ 3 and P(1),P(2), . . . ,P(n − 1) are all true.

Then Fn = Fn−1 + Fn−2

< 2n−1 + 2n−2 using P(n − 1) and P(n − 2)

< 2n−1 + 2n−1 this step is clever!

= 2 × 2n−1 = 2n,

so P(n) is true.
So P(n) is true for all n.
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What is the base case?

Sometimes (especially with strong induction) the base case is not just P(1).
Might need P(2) as well, or P(0), . . . .

The base case(s) are any cases to which the inductive step doesn’t apply.

If in doubt, do the inductive step first. Think about which values of n it doesn’t
work for, and do these as base cases.
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Tips for checking proofs

▶ Make sure the mathematical grammar is correct. Don’t write A = x if A is a
set and x is a number.

▶ Make sure the proof goes in the right direction. Start with the hypotheses,
and deduce the conclusion.
(Special cases: proof by contradiction and proof by contrapositive.)

▶ Make sure the proof doesn’t use any unjustified assumptions. Check that
you understand where each line comes from.

▶ Check that the proof uses all the hypotheses. If there’s a hypothesis that’s
not used, then either the proof is wrong, or the theorem is true without that
hypothesis.

▶ Work through the proof for special values of the variables, like n = 1. For
an induction proof, check the case n = 2 carefully.
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More guidance for proofs

“How to write proofs: a quick guide” by Eugenia Cheng is on QMplus.

Eugenia Cheng is a British mathematician, educator,
concert pianist and composer. She has several books
and numerous YouTube videos explaining maths for
maths students and for the general public.
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