Proof by induction

Proof by induction is a useful method for proving a statement $P(n)$ depending on a positive integer n.

Proof by induction

Proof by induction is a useful method for proving a statement $P(n)$ depending on a positive integer n.

Two steps:

Proof by induction

Proof by induction is a useful method for proving a statement $P(n)$ depending on a positive integer n.

Two steps:

Base case: Prove that $P(1)$ is true.

Proof by induction

Proof by induction is a useful method for proving a statement $P(n)$ depending on a positive integer n.

Two steps:

Base case: Prove that $P(1)$ is true.

Inductive step: Prove that if $P(n-1) \Rightarrow P(n)$ for every $n \geqslant 2$.

Example of a proof by induction

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Very helpful to give a name to the statement you're trying to prove

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true.

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true. Inductive step: Suppose $n \geqslant 2$ and that $P(n-1)$ is true.

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true. Inductive step: Suppose $n \geqslant 2$ and that $P(n-1)$ is true. Then $8^{n-1}-3^{n-1}=5 k$ for some integer k.

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true. Inductive step: Suppose $n \geqslant 2$ and that $P(n-1)$ is true. Then $8^{n-1}-3^{n-1}=5 k$ for some integer k. So

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true. Inductive step: Suppose $n \geqslant 2$ and that $P(n-1)$ is true. Then $8^{n-1}-3^{n-1}=5 k$ for some integer k. So

$$
8^{n}-3^{n}=
$$

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true. Inductive step: Suppose $n \geqslant 2$ and that $P(n-1)$ is true. Then $8^{n-1}-3^{n-1}=5 k$ for some integer k. So

$$
8^{n}-3^{n}=8 \times 8^{n-1}-3 \times 3^{n-1}
$$

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true. Inductive step: Suppose $n \geqslant 2$ and that $P(n-1)$ is true. Then $8^{n-1}=5 k+3^{n-1}$ for some integer k. So

$$
8^{n}-3^{n}=8 \times 8^{n-1}-3 \times 3^{n-1}
$$

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true. Inductive step: Suppose $n \geqslant 2$ and that $P(n-1)$ is true. Then $8^{n-1}=5 k+3^{n-1}$ for some integer k. So

$$
\begin{aligned}
8^{n}-3^{n} & =8 \times 8^{n-1}-3 \times 3^{n-1} \\
& =8 \times\left(5 k+3^{n-1}\right)-3 \times 3^{n-1}
\end{aligned}
$$

$$
\text { (using } P(n-1) \text {) }
$$

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true. Inductive step: Suppose $n \geqslant 2$ and that $P(n-1)$ is true. Then $8^{n-1}=5 k+3^{n-1}$ for some integer k. So

$$
\begin{aligned}
8^{n}-3^{n} & =8 \times 8^{n-1}-3 \times 3^{n-1} \\
& =8 \times\left(5 k+3^{n-1}\right)-3 \times 3^{n-1} \quad(\text { using } P(n-1)) \\
& =5 \times\left(8 k+3^{n-1}\right)
\end{aligned}
$$

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true. Inductive step: Suppose $n \geqslant 2$ and that $P(n-1)$ is true. Then $8^{n-1}=5 k+3^{n-1}$ for some integer k. So

$$
\begin{aligned}
8^{n}-3^{n} & =8 \times 8^{n-1}-3 \times 3^{n-1} \\
& =8 \times\left(5 k+3^{n-1}\right)-3 \times 3^{n-1} \\
& =5 \times\left(8 k+3^{n-1}\right)
\end{aligned}
$$

$$
\text { (using } P(n-1))
$$

which is divisible by 5 .

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true. Inductive step: Suppose $n \geqslant 2$ and that $P(n-1)$ is true. Then $8^{n-1}=5 k+3^{n-1}$ for some integer k. So

$$
\begin{aligned}
8^{n}-3^{n} & =8 \times 8^{n-1}-3 \times 3^{n-1} \\
& =8 \times\left(5 k+3^{n-1}\right)-3 \times 3^{n-1} \\
& =5 \times\left(8 k+3^{n-1}\right)
\end{aligned}
$$

$$
\text { (using } P(n-1))
$$

which is divisible by 5 . So $P(n)$ is true.

Example of a proof by induction

Theorem: Suppose n is a positive integer. Then $8^{n}-3^{n}$ is divisible by 5 .
Proof: We use induction.
Let $P(n)$ denote the statement " $8^{n}-3^{n}$ is divisible by 5 ".
Base case: $P(1)$ says that $8-3$ is divisible by 5 , which is true.
Inductive step: Suppose $n \geqslant 2$ and that $P(n-1)$ is true. Then $8^{n-1}=5 k+3^{n-1}$ for some integer k. So

$$
\begin{aligned}
8^{n}-3^{n} & =8 \times 8^{n-1}-3 \times 3^{n-1} \\
& =8 \times\left(5 k+3^{n-1}\right)-3 \times 3^{n-1} \\
& =5 \times\left(8 k+3^{n-1}\right)
\end{aligned}
$$

$$
\text { (using } P(n-1) \text {) }
$$

which is divisible by 5 . So $P(n)$ is true.
So by induction $P(n)$ is true for all n.

Proof by strong induction

Strong induction is a more powerful technique.

Proof by strong induction

Strong induction is a more powerful technique.
Base case: Prove that $P(1)$ is true.

Proof by strong induction

Strong induction is a more powerful technique.
Base case: Prove that $P(1)$ is true.
Inductive step:
Prove that if $n \geqslant 2$ and $P(1), P(2), \ldots, P(n-1)$ are all true, then $P(n)$ is true.

Proof by strong induction

Strong induction is a more powerful technique.
Base case: Prove that $P(1)$ is true.
Inductive step:
Prove that if $n \geqslant 2$ and $P(1), P(2), \ldots, P(n-1)$
are all true, then $P(n)$ is true.
Why does it work?

$$
\begin{aligned}
& P(1) \\
& P(2) \\
& P(3) \\
& P(4)
\end{aligned}
$$

Proof by strong induction

Strong induction is a more powerful technique.
Base case: Prove that $P(1)$ is true.
Inductive step:
Prove that if $n \geqslant 2$ and $P(1), P(2), \ldots, P(n-1)$
are all true, then $P(n)$ is true.
Why does it work?
$P(1)$ true by the base case
$P(2)$
$P(3)$
$P(4)$

Proof by strong induction

Strong induction is a more powerful technique.
Base case: Prove that $P(1)$ is true.
Inductive step:
Prove that if $n \geqslant 2$ and $P(1), P(2), \ldots, P(n-1)$
are all true, then $P(n)$ is true.
Why does it work?
$P(1)$ true by the base case
$P(2)$ true by the inductive step because $P(1)$ is true
$P(3)$
$P(4)$

Proof by strong induction

Strong induction is a more powerful technique.
Base case: Prove that $P(1)$ is true.
Inductive step:
Prove that if $n \geqslant 2$ and $P(1), P(2), \ldots, P(n-1)$
are all true, then $P(n)$ is true.
Why does it work?
$P(1)$ true by the base case
$P(2)$ true by the inductive step because $P(1)$ is true
$P(3)$ true by the inductive step because $P(1), P(2)$ are true
$P(4)$

Proof by strong induction

Strong induction is a more powerful technique.
Base case: Prove that $P(1)$ is true.
Inductive step:
Prove that if $n \geqslant 2$ and $P(1), P(2), \ldots, P(n-1)$
are all true, then $P(n)$ is true.
Why does it work?
$P(1)$ true by the base case
$P(2)$ true by the inductive step because $P(1)$ is true
$P(3)$ true by the inductive step because $P(1), P(2)$ are true
$P(4)$ true by the inductive step because $P(1), P(2), P(3)$ are true

Proof by strong induction

Strong induction is a more powerful technique.
Base case: Prove that $P(1)$ is true.
Inductive step:
Prove that if $n \geqslant 2$ and $P(1), P(2), \ldots, P(n-1)$
are all true, then $P(n)$ is true.
Why does it work?
$P(1)$ true by the base case
$P(2)$ true by the inductive step because $P(1)$ is true
$P(3)$ true by the inductive step because $P(1), P(2)$ are true
$P(4)$ true by the inductive step because $P(1), P(2), P(3)$ are true

Strong induction

Fibonacci sequence: Define $F_{1}, F_{2}, F_{3}, \ldots$ by

$$
F_{1}=F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2} \text { for } n \geqslant 3 .
$$

Strong induction

Fibonacci sequence: Define $F_{1}, F_{2}, F_{3}, \ldots$ by

$$
F_{1}=F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2} \text { for } n \geqslant 3 .
$$

Theorem 3.6: $F_{n}<2^{n}$ for all n.

Strong induction

Fibonacci sequence: Define $F_{1}, F_{2}, F_{3}, \ldots$ by

$$
F_{1}=F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2} \text { for } n \geqslant 3 .
$$

Theorem 3.6: $F_{n}<2^{n}$ for all n.
Proof: Let $P(n)$ denote the inequality $F_{n}<2^{n}$.
Base case: There are two base cases.

Strong induction

Fibonacci sequence: Define $F_{1}, F_{2}, F_{3}, \ldots$ by

$$
F_{1}=F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2} \text { for } n \geqslant 3 .
$$

Theorem 3.6: $F_{n}<2^{n}$ for all n.
Proof: Let $P(n)$ denote the inequality $F_{n}<2^{n}$.
Base case: There are two base cases.
$P(1)$ says $1<2^{1}$, which is true.

Strong induction

Fibonacci sequence: Define $F_{1}, F_{2}, F_{3}, \ldots$ by

$$
F_{1}=F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2} \text { for } n \geqslant 3 .
$$

Theorem 3.6: $F_{n}<2^{n}$ for all n.
Proof: Let $P(n)$ denote the inequality $F_{n}<2^{n}$.
Base case: There are two base cases.
$P(1)$ says $1<2^{1}$, which is true.
$P(2)$ says $1<2^{2}$, which is true.

Strong induction

Theorem 3.6: $F_{n}<2^{n}$ for all n.

Strong induction

Theorem 3.6: $F_{n}<2^{n}$ for all n.
Inductive step: Suppose $n \geqslant 3$ and $P(1), P(2), \ldots, P(n-1)$ are all true.

Strong induction

Theorem 3.6: $F_{n}<2^{n}$ for all n.
Inductive step: Suppose $n \geqslant 3$ and $P(1), P(2), \ldots, P(n-1)$ are all true.
Then $\quad F_{n}=F_{n-1}+F_{n-2}$

Strong induction

Theorem 3.6: $F_{n}<2^{n}$ for all n.
Inductive step: Suppose $n \geqslant 3$ and $P(1), P(2), \ldots, P(n-1)$ are all true.
Then

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \\
& <2^{n-1}+2^{n-2}
\end{aligned}
$$

$$
\text { using } P(n-1) \text { and } P(n-2)
$$

Strong induction

Theorem 3.6: $F_{n}<2^{n}$ for all n.
Inductive step: Suppose $n \geqslant 3$ and $P(1), P(2), \ldots, P(n-1)$ are all true.
Then

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \\
& <2^{n-1}+2^{n-2} \\
& <2^{n-1}+2^{n-1}
\end{aligned}
$$

$$
\text { using } P(n-1) \text { and } P(n-2)
$$

Strong induction

Theorem 3.6: $F_{n}<2^{n}$ for all n.
Inductive step: Suppose $n \geqslant 3$ and $P(1), P(2), \ldots, P(n-1)$ are all true.
Then

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \\
& <2^{n-1}+2^{n-2} \quad \text { using } P(n-1) \text { and } P(n-2) \\
& <2^{n-1}+2^{n-1} \text { this step is clever! }
\end{aligned}
$$

Strong induction

Theorem 3.6: $F_{n}<2^{n}$ for all n.
Inductive step: Suppose $n \geqslant 3$ and $P(1), P(2), \ldots, P(n-1)$ are all true.
Then

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \\
& <2^{n-1}+2^{n-2} \\
& <2^{n-1}+2^{n-1} \\
& =2 \times 2^{n-1}=2^{n},
\end{aligned}
$$

$$
\text { using } P(n-1) \text { and } P(n-2)
$$

Strong induction

Theorem 3.6: $F_{n}<2^{n}$ for all n.
Inductive step: Suppose $n \geqslant 3$ and $P(1), P(2), \ldots, P(n-1)$ are all true.
Then

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \\
& <2^{n-1}+2^{n-2} \\
& <2^{n-1}+2^{n-1} \\
& =2 \times 2^{n-1}=2^{n},
\end{aligned}
$$

so $P(n)$ is true.

Strong induction

Theorem 3.6: $F_{n}<2^{n}$ for all n.
Inductive step: Suppose $n \geqslant 3$ and $P(1), P(2), \ldots, P(n-1)$ are all true.
Then $\quad F_{n}=F_{n-1}+F_{n-2}$

$$
<2^{n-1}+2^{n-2} \quad \text { using } P(n-1) \text { and } P(n-2)
$$

so $P(n)$ is true.
So $P(n)$ is true for all n.

What is the base case?

What is the base case?

Sometimes (especially with strong induction) the base case is not just $P(1)$. Might need $P(2)$ as well, or $P(0), \ldots$.

What is the base case?

Sometimes (especially with strong induction) the base case is not just $P(1)$. Might need $P(2)$ as well, or $P(0), \ldots$.

The base case(s) are any cases to which the inductive step doesn't apply.

What is the base case?

Sometimes (especially with strong induction) the base case is not just $P(1)$. Might need $P(2)$ as well, or $P(0), \ldots$.

The base case(s) are any cases to which the inductive step doesn't apply.

If in doubt, do the inductive step first.

What is the base case?

Sometimes (especially with strong induction) the base case is not just $P(1)$. Might need $P(2)$ as well, or $P(0), \ldots$.

The base case(s) are any cases to which the inductive step doesn't apply.

If in doubt, do the inductive step first. Think about which values of n it doesn't work for, and do these as base cases.

Tips for checking proofs

- Make sure the mathematical grammar is correct.

Tips for checking proofs

- Make sure the mathematical grammar is correct. Don't write $A=x$ if A is a set and x is a number.

Tips for checking proofs

- Make sure the mathematical grammar is correct. Don't write $A=x$ if A is a set and x is a number.
- Make sure the proof goes in the right direction.

Tips for checking proofs

- Make sure the mathematical grammar is correct. Don't write $A=x$ if A is a set and x is a number.
- Make sure the proof goes in the right direction. Start with the hypotheses, and deduce the conclusion.

Tips for checking proofs

- Make sure the mathematical grammar is correct. Don't write $A=x$ if A is a set and x is a number.
- Make sure the proof goes in the right direction. Start with the hypotheses, and deduce the conclusion.
(Special cases: proof by contradiction and proof by contrapositive.)

Tips for checking proofs

- Make sure the mathematical grammar is correct. Don't write $A=x$ if A is a set and x is a number.
- Make sure the proof goes in the right direction. Start with the hypotheses, and deduce the conclusion.
(Special cases: proof by contradiction and proof by contrapositive.)
- Make sure the proof doesn't use any unjustified assumptions.

Tips for checking proofs

- Make sure the mathematical grammar is correct. Don't write $A=x$ if A is a set and x is a number.
- Make sure the proof goes in the right direction. Start with the hypotheses, and deduce the conclusion.
(Special cases: proof by contradiction and proof by contrapositive.)
- Make sure the proof doesn't use any unjustified assumptions. Check that you understand where each line comes from.

Tips for checking proofs

- Make sure the mathematical grammar is correct. Don't write $A=x$ if A is a set and x is a number.
- Make sure the proof goes in the right direction. Start with the hypotheses, and deduce the conclusion.
(Special cases: proof by contradiction and proof by contrapositive.)
- Make sure the proof doesn't use any unjustified assumptions. Check that you understand where each line comes from.
- Check that the proof uses all the hypotheses.

Tips for checking proofs

- Make sure the mathematical grammar is correct. Don't write $A=x$ if A is a set and x is a number.
- Make sure the proof goes in the right direction. Start with the hypotheses, and deduce the conclusion.
(Special cases: proof by contradiction and proof by contrapositive.)
- Make sure the proof doesn't use any unjustified assumptions. Check that you understand where each line comes from.
- Check that the proof uses all the hypotheses. If there's a hypothesis that's not used, then either the proof is wrong, or the theorem is true without that hypothesis.

Tips for checking proofs

- Make sure the mathematical grammar is correct. Don't write $A=x$ if A is a set and x is a number.
- Make sure the proof goes in the right direction. Start with the hypotheses, and deduce the conclusion.
(Special cases: proof by contradiction and proof by contrapositive.)
- Make sure the proof doesn't use any unjustified assumptions. Check that you understand where each line comes from.
- Check that the proof uses all the hypotheses. If there's a hypothesis that's not used, then either the proof is wrong, or the theorem is true without that hypothesis.
- Work through the proof for special values of the variables, like $n=1$.

Tips for checking proofs

- Make sure the mathematical grammar is correct. Don't write $A=x$ if A is a set and x is a number.
- Make sure the proof goes in the right direction. Start with the hypotheses, and deduce the conclusion.
(Special cases: proof by contradiction and proof by contrapositive.)
- Make sure the proof doesn't use any unjustified assumptions. Check that you understand where each line comes from.
- Check that the proof uses all the hypotheses. If there's a hypothesis that's not used, then either the proof is wrong, or the theorem is true without that hypothesis.
- Work through the proof for special values of the variables, like $n=1$. For an induction proof, check the case $n=2$ carefully.

More guidance for proofs

"How to write proofs: a quick guide" by Eugenia Cheng is on QMplus.

More guidance for proofs

"How to write proofs: a quick guide" by Eugenia Cheng is on QMplus.

Eugenia Cheng is a British mathematician, educator, concert pianist and composer. She has several books and numerous YouTube videos explaining maths for maths students and for the general public.

