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Abstract. We introduce delta centralities, a new class of measures of structural
centrality for networks. In particular, we focus on a measure in this class, the
information centrality CI , which is based on the concept of efficient propagation
of information over the network. CI is defined for both valued and non-valued
graphs, and applies to groups as well as individuals. The measure is illustrated
and compared with respect to the standard centrality measures by using a
classic network data set. The statistical distribution of information centrality is
investigated by considering large computer generated graphs and two networks
from the real world.
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1. Introduction

The idea of centrality was first applied to human communication by Bavelas [1] who was
interested in the characterization of the communication in small groups of people and assumed
a relation between structural centrality and influence in group processes. Since then, various
measures of centrality have been proposed over the years to quantify the importance of an
individual in a social network [2]. More recently, the issue of structural centrality has attracted
the attention of physicists [3]–[5], who have extended its applications to the realm of biological
and technological networks (see for instance [6]–[8]). The standard centrality measures can be
divided into two classes: those based on the idea that the centrality of a node in a network is
related to how it is near to other nodes, and those based on the idea that central nodes stand
between others, playing the role of intermediary [2]. Degree [9] and closeness [10] are examples
of measures of the first kind, while shortest-path [11] or flow [12] betweenness are measures
of the second kind. In this paper, we propose a new class of centrality measures, the so-called
delta centrality (or � centralities), which is a combination of the two main classes of centrality
mentioned above. Delta centralities measure the contribution of a node to a network cohesiveness
property, from the observed variation in such property (hereafter called ‘delta centrality’)
when the node is deleted. In particular, we study one measure of this class, the information
centrality, based on the concept of efficient propagation of information over the network
[13, 14]. The information centrality of a node is defined as the relative drop in the network
efficiency caused by the removal of the node from the network. In other words, the information
centrality measures how communication over the network is affected by the deactivation of the
node. The information centrality is defined for both valued and non-valued graphs, and even
more importantly, it naturally applies to groups of nodes as well as single nodes.

The paper is organized as follows. In section 2, we present a brief review of the standard
measures. In section 3, we introduce the delta centralities and the information centrality; we then
illustrate similarities and dissimilarities with respect to the standard measures by means of a few
simple examples. In section 4, we draw our conclusions.

2. Classic measures of centrality

Centrality measures will be illustrated and framed in their natural historical context, that of social
networks. A social network is here represented as a undirected, non-valued graph G, consisting
of a set of N nodes (or vertices) and a set of K edges (or lines) connecting pairs of nodes. The
nodes of the graph are the individuals, the actors of a social group, and the lines represent the
social links. We describe the graph by the so-called adjacency matrix, a N × N matrix whose
entry aij is 1 if there is an edge between i and j and 0 otherwise. The entries on the diagonal,
values of aii, are undefined and for convenience are set equal to 0.

The degree centrality is based on the idea that important nodes are those with the largest
number of ties to other nodes in the graph. The degree centrality of a node i is defined as [9]:

CD
i = ki

N − 1
=

∑
j∈G aij

N − 1
, (1)

where ki is the degree of node i.
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The closeness centrality of a node i is based on the concept of minimum distance or geodesic
dij, i.e. the minimum number of edges traversed to get from i to j [5] and is defined as [2, 10]:

CC
i = (Li)

−1 = N − 1∑
j∈G dij

, (2)

where Li is the average distance from i to all the other nodes.
The betweenness centrality, in its basic version, is defined by assuming that the

communication travels just along the geodesic. If njk is the number of geodesics linking two
nodes j and k, and njk(i) is the number of geodesics linking the two nodes j and k that contain
node i, the betweenness centrality of node i can be defined as [11]:

CB
i = 1

(N − 1)(N − 2)

∑
j∈G,j �=i

∑
k∈G,k �=i,k �=j

njk(i)/njk. (3)

There are several extensions for cases in which communication does not travel through geodesic
paths only [12, 15, 16]. In particular, the flow betweenness is defined by assuming that each
edge of the graph is like a pipe and can carry a unitary amount of flow [12]. By considering a
generic node j as the source of flow, and a generic node k as the target, it is possible to calculate
the maximum possible flow from j to k by means of the min-cut, max-flow theorem [17, 18].
The flow betweenness centrality of node i is defined as:

CF
i =

∑
j,k∈G mjk(i)∑

j,k∈G mjk

, (4)

where mjk(i) is the amount of flow passing through i when the maximum flow mjk is exchanged
from j to k.

All the centrality measures defined above can also be extended to quantify the importance of
a group of nodes. Nevertheless such an extension (and the relative normalization) is not unique
and a series of conventions must be adopted [19]. Conversely, the centrality measures we are
going to introduce in the next section are defined in a natural way both for individuals and groups
of individuals.

3. Delta centralities: the information centrality

Delta centrality measures are based on the following idea: the importance of a node (group of
nodes) is related to the ability of the network to respond to the deactivation of the node (group
of nodes) from the network. If G is the graph representing the network, the delta centrality (or
� centrality), of node i, C�

i , is defined as:

C�
i = (�P)i

P
= P[G] − P[G′]

P[G]
, (5)

where P is a generic quantity measuring the cohesiveness of the graph, and (�P)i is the variation
of P under the deactivation (isolation) of node i, i.e. the removal from the graph of the edges
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incident in node i. By G′ we indicate the graph obtained by removing from G the edges incident
in node i. The precise definition of P in formula (5) does not need to be better specified. There
are only some general restrictions on the choice of the quantity P . For instance, we require
(�P)i � 0 for any node i of the graph. Of course, the meaning and effectiveness of the centrality
measure C� will depend on the choice of P . The simplest possibility is to take P[G] = K, where
K is the number of edges in the graph G. In this case, (�P)i will be proportional to the degree
and the degree centrality, CD

i , of i. A more interesting example is to take as P the efficiency E of
the graph, a quantity introduced in [13] and measuring how well the nodes of the graph exchange
information. This quantity is based on the assumption that the information/communication in a
network travels along the shortest routes, and that the efficiency in the communication between
two nodes i and j is equal to 1/dij. The efficiency E[G] of a graph G is defined as:

E[G] = 1

N(N − 1)

∑
i�=j∈G

1

dij

, (6)

and measures the mean flow-rate of information over G [13, 14]. In such case, the delta centrality
of a node i (of a group of nodes S), that we name information centrality CI

i (CI
S), is defined

as the relative drop in the network efficiency caused by the deactivation of i (of S) from the
graph G:

CI
i = �E

E
= E[G] − E[G′]

E[G]
. (7)

In this formula we indicate by G′ the graph of N nodes obtained by removing from G the edges
incident in node i (in nodes belonging to S)4. (A similar idea can also be applied to define the
importance of the edges of a graph [20]–[22].) The removal of some of the edges affects the
communication between various nodes of the graph increasing the length of the shortest paths,
consequently E[G′] � E[G]. The measure CI

i , as the standard measures, is normalized to take
values in the interval [0, 1]. It is immediately seen that CI is somehow correlated to the three
standard measures CD, CC and CB. In fact the information centrality of node i depends on ki,
since the efficiency E[G′] is smaller if the number of edges removed from the original graph is
larger. CI

i is correlated to CC
i since the efficiency of a graph is connected to (

∑
i Li)

−1. Finally
CI

i , similarly to CB
i , depends on the number of geodesics passing by i, but it also depends on

the lengths of the new geodesics, the alternative paths that are used as communication channels,
once the node i is deactivated. No information about the new shortest paths is contained in CB

i ,
and in the other two standard measures.

3.1. Simple examples

The information centrality agrees with the standard measures on assignment of extremes: for
instance it gives the maximum importance to the central node of a star, and equal importance to

4 A valued graph is a better description of a social system if the intensity of the social relations is a relevant
ingredient that one wants to take into account. The same definition applies to valued graphs with the only difference
that weighted shortest paths should be used in the definition of the efficiency [13, 14].
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Figure 1. The tree T1 with N = 16 nodes reported in figure, and the tree T2,
obtained from T1 by disconnecting node 10 from the rest of the graph, are used
to compare the centrality measures.

the nodes of a complete graph. However the agreement breaks down between these extremes.
Consider, for instance, a graph G composed by two main parts, graph G1 with N1 nodes and

graph G2 with N2 nodes (N1 > N2), and by a single node n, connecting G1 to G2. For such a
simple example CI assigns, similarly to CB, the maximum importance to node n, which certainly
plays an important role since it works as a bridge between G1 and G2. On the other hand it is
very unlikely that CD or CC would attribute the highest score to n.5

We now show that, in graphs with no cycles (trees), as T1 and T2 in figure 1, CI is more
similar to CC than to CD and CB concerning resolution and stability. The four centrality scores
for T1 are shown in table 1 left, where nodes are ordered in decreasing order of CI. Although
all the four measures attribute the highest centrality to node 2, there are some differences worth
mentioning. As better shown in table 1 top-right, CI assigns the top score in T1 to node 2, second
score to nodes 1, 3, third score to nodes 7, 12, and is also able to disentangle nodes 9, 10, 11
(fourth score) from the remaining ones. The only other measure that operates such a distinction
is CC which, on the other hand, assigns the second score to nodes 7, 12 and the third score to
nodes 1, 3 inverting the result of CI. Neither CD nor CB have the resolution of CI and CC. In fact
CD assigns the top score to the three nodes 1, 2, 3, all having five neighbours, and the second
score to nodes 7, 12 both with two neighbours. While CB assigns the top score to node 2 and the
second score to nodes 1, 3, 7, 12. Both CD and CB do not distinguish nodes 9, 10, 11 from the
remaining ones. The node ranking obtained in T2 is reported in table 1 bottom-right. While in
tree T1 nodes 2, 1 and 3 have the same number of neighbours, in T2, node 2 has less neighbours
than nodes 1 and 3: this affects the node rankings based on CD and CB, while it does not change
the rankings based on CI and CC.

3.2. Individuals and groups

As an example of a graph with cycles, we now study a real database recording 3 months of
interactions amongst a group of 20 monkeys, where interactions were defined as joint presence

5 In fact, G1 and G2 may contain nodes with degree larger than kn. Moreover the node with smallest distance to all
the other nodes will probably be in G1, especially if we assume N1 � N2.
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Table 1. Left: centrality values for the nodes of T1. Right: centrality rankings in
T1 (top) and T2 (bottom).

Node CI CD CC CB

2 0.591 0.333 0.455 0.714
1 0.444 0.333 0.349 0.476
3 0.444 0.333 0.349 0.476
7 0.389 0.133 0.405 0.476

12 0.389 0.133 0.405 0.476
9 0.116 0.067 0.319 0.000

10 0.116 0.067 0.319 0.000
11 0.116 0.067 0.319 0.000
4 0.106 0.067 0.263 0.000
5 0.106 0.067 0.263 0.000
6 0.106 0.067 0.263 0.000
8 0.106 0.067 0.263 0.000

13 0.106 0.067 0.263 0.000
14 0.106 0.067 0.263 0.000
15 0.106 0.067 0.263 0.000
16 0.106 0.067 0.263 0.000

Rank CI CD CC CB

1 2 1, 2, 3 2 2
2 1, 3 7, 12 7, 12 1, 3, 7, 12
3 7, 12 Others 1, 3 Others
4 9, 10, 11 9, 10, 11
5 Others Others

Rank CI CD CC CB

1 2 1, 3 2 2
2 1, 3 2 7, 12 1, 3
3 7, 12 7, 12 1, 3 7, 12
4 9, 11 Others 9, 11 Others
5 Others Others

Figure 2. The graph of the interactions amongst a group of 20 monkeys [19].
The data set contains also information on the sex and age of each animal (see
table 2).

at the river [19]. The resulting graph, shown in figure 2, consists in 6 isolated nodes and a
connected component of 14 nodes. Such a graph has been studied in [19], where the standard
node centrality measures CD, CC and CD have been generalized to apply to groups as well as
individuals. We can therefore compare the measure we have introduced to the standard measures
of node and also of group centrality. In table 2 we report the obtained node centrality scores. All
the measures assign the first score to monkey 3, second score to monkey 12, and third score to
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Table 2. Node centralities: for each monkey of figure 2 we report age and sex
group, information centrality CI and the three standard centrality measures CD,
CC and CB. The flow betweenness centrality CF is also reported in the last column.

Age goup Sex CI CD CC CB CF

1 14–16 M 0.139 0.211 0.134 0.006 0.084
2 10–13 M 0.000 0.000 0.050 0.000 0.000
3 10–13 M 0.375 0.684 0.143 0.260 0.444
4 7–9 M 0.131 0.158 0.133 0.000 0.023
5 7–9 M 0.123 0.105 0.132 0.000 0.044
6 14–16 F 0.000 0.000 0.050 0.000 0.000
7 4–5 F 0.131 0.158 0.133 0.000 0.027
8 10–13 F 0.131 0.158 0.133 0.003 0.073
9 7–9 F 0.115 0.053 0.131 0.000 0.000

10 7–9 F 0.131 0.158 0.133 0.000 0.018
11 14–16 F 0.123 0.105 0.132 0.000 0.004
12 10–13 F 0.180 0.474 0.139 0.060 0.219
13 14–16 F 0.156 0.316 0.136 0.011 0.115
14 4–5 F 0.139 0.211 0.134 0.000 0.028
15 7–9 F 0.156 0.316 0.136 0.011 0.115
16 10–13 F 0.000 0.000 0.050 0.000 0.000
17 7–9 F 0.131 0.158 0.133 0.000 0.018
18 4–5 F 0.000 0.000 0.050 0.000 0.000
19 14–16 F 0.000 0.000 0.050 0.000 0.000
20 4–5 F 0.000 0.000 0.050 0.000 0.000

monkeys 13 and 15. The six isolated monkeys are the least central nodes according to CI, CD

and CC. CB assigns a zero score to fourteen nodes, the six isolated monkeys, and nodes 4, 5, 7, 9,
10, 11, 14, 17. In fact, the latter nodes do not contribute to the shortest paths, although they have
a degree equal to or larger than one (for instance node 14 has four neighbours). Conversely, the
flow betweenness CF, assigns a zero score to seven nodes: the six isolated nodes and node 9. For
the data set considered, the ranking of the 20 nodes produced by CI is the same as that produced
by CD and CC. Nevertheless, as shown in table 2, the values obtained are different. For instance
the first node in the rank, namely monkey 3, has CD = 0.684, CI = 0.375 and CC = 0.143. In
figure 3 we plot the centrality score of each node, normalized to the highest score. The nodes
are ordered as a function of their normalized score based on CI. The general behaviour of
CI is similar to that of CD, CC and CB, although for the first four nodes the normalized
values of CI are smaller than CD and CC, and larger than CB and CF. The flow betweenness
shows some differences with respect to the other measures: the two peaks at rank 9 and rank 12,
corresponding respectively to node 8 and node 5, indicate that these two monkeys rank higher,
according to CF.

We now consider six different groups, four formed by age and two formed by sex [19].
Group 1 contains the five monkeys having age 14–16, group 2 the five monkeys having age
10–13, group 3 the six monkeys having age 7–9 and group 4 the four monkeys having age 4–5.
Group 5 is made by the five females, while group 6 is made by the fifteen males. As illustrated in
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Figure 3. Node centrality score for the 20 nodes of the graph of interactions
amongst monkeys plotted in figure 2. The values reported are normalized to the
highest score. The nodes are ordered according to their value of CI (see table 2).
Node normalized to the highest score.

figure 4, among the age groups the most central one is the 10–13 years old (group 2), according
to all the four measures. This is the group containing monkey 3, who is also the most central node
as an individual. The four age groups in decreasing order of importance are: 2, 3, 1, 4 for the
information centrality, 2, 1, 3, 4 for the degree centrality, 2, 1, 4, 3 for the closeness centrality and
2, 1, 3–4 for the betweenness centrality which assigns a score equal to zero to the two youngest
groups. CI is the only measure assigning the second position to the 7–9 years old, while the
other three measures assign the second position to the 14–16 years old. CI assigns last position
to group 4 (age 4–5), similarly to the degree centrality and to the betwenness centrality. Among
the sex groups the most central one is the male group (which is also the largest one) for both CI

and CD. The situation is inverted according to CB, while CC attributes the same score to the two
groups.

3.3. Large networks

In this section we investigate how the information centrality is statistically distributed among
the nodes of large graphs. In order to reduce the statistical fluctuations, we have computed the
cumulative distribution P(CI) defined in terms of the (differential) distribution p(CI) as:

P(CI) =
∫ +∞

CI

p(X)dX =
∫ +∞

CI

N(X)

N
dX, (8)

where p(X)dX is the probability to find a node with an information centrality ranging in the
interval X, X + dX, while N(X)dX is the number of nodes with an information centrality ranging
in the interval X, X + dX, and N is the total number of nodes in the graph.

First, we have considered two kinds of artificial generated graphs, namely: Erdős–Rényi
(ER) random graphs, and generalized random graphs with a given degree distribution. We
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Figure 4. Group centrality scores for the four centrality measures and for each
of the six groups considered, namely: group 1 (age 14–16), group 2 (age 10–13),
group 3 (age 7–9), group 4 (age 4–5), group 5 (males), group 6 (females).

have generated ER random graphs, GER(N, K), with N = 1000 nodes and K = 5000 links, and
generalized random graphs with N = 1000 nodes and a power-law degree distribution pk ∼ k−γ

with exponent γ = 3 [3]–[5]. In figure 5, panel (a) and (b) we report as circles the cumulative
distributions of information obtained in the two cases. The dashed line in panel (a) is a Gaussian
fit to the points, while the dashed straight line in the log–log plot of panel (b) is a power law fit,
P(CI) ∼ (CI)−µ, with an exponent µ = 1.75. The latter result indicates that in a random graph
with a power-law degree distribution, the information centrality is also distributed as a power
law. In the case considered we have found: p(CI) ∼ (CI)−2.75.

We have also considered two networks from the real world. The first graph describes
the urban street pattern of the city of Richmond (US) [23]. The graph has N = 697
nodes representing street intersections and K = 1086 links representing streets. The obtained
information distribution is reported in figure 5 panel (c). Also in this case, as in the case of the
ER random graph shown in panel (a), CI exhibits a single scale distribution. The dashed line in
figure 5(c) is an exponential fit to the empirical distributions of the form P(C) ∼ exp(−C/s) with
s = 0.0017. Finally, we have considered in figure 5(d) the protein–protein interaction network
of S. cerevisiae. The graph consists of N = 1870 nodes, the proteins, connected by K = 2240
links representing physical interactions among proteins [24]. This network exhibits a broad-scale
information distribution as the artifical network considered in panel (b). The dashed line in the
log–log plot of figure 5(d) is a power law fit to the empirical distribution, P(C) ∼ C−µ, with
µ = −1.52.
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Figure 5. Cumulative distributions of information centrality in four large
networks, namely: (a) ER random graph with N = 1000 nodes and K = 5000
links; (b) generalized random graph with N = 1000 nodes and a scale-free degree
distribution pk ∼ k−3; (c) the urban street network of the city of Richmond (US)
with N = 697 and K = 1086; (d) the S. cerevisiae protein–protein interaction
network with N = 1870 nodes and K = 2240 links. The results in panels (a) and
(b) are averages over an ensemble of 30 graphs. The dashed lines in panels (a)
and (c) are respectively Gaussian and exponential fits to the distributions, while
the dashed lines in panels (b) and (d) are power law fits.

4. Conclusions

In this paper, we have introduced a new class of centrality measures, the so-called delta centrality,
that extends in a natural way to groups. In particular, we have focused on a measure of this
class, the information centrality CI, that is based on the network efficiency. We have illustrated
similarities and dissimilarities with respect to the standard measures adopted in sociometry by
considering some small networks. We have also investigated how the information centrality
is statistically distributed among the nodes of large graphs, by considering artificial generated
graphs and networks from the real world. CI is the first step toward the idea of measuring
network topology through network function and dynamics [25, 26]. CI has already proved
useful in algorithms to find community structures [20], in the characterization of planar graphs
[27]–[29], and to quantify the relevance of soluble mediators in the human immune cell network
[30]. It remains to be seen, in the light of further empirical work, if and in which cases the new
measure is more appropriate than the others.
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