Complex Networks
(MTHG6142)
2023/24

WEEK 1 Lecture 1



Module Convenor: Prof Vito Latora

Lectures:
— Wednesday 11:00-13:00 (2 hours)
— Friday 11:00-12:00 (1 hour)

Tutorials (from week 2):
— Friday 12:00-13:00 (1 hour)

Online forum: Please first ask questions here

Office hours:
— Monday 15:00-16:00,
— Wednesday 13:00-14:00 (Learning Café, Room mB-B11)



Module Assessment
 Assessed courseworks: worth 20%

— 5 courseworks (3 Quizzes, 2 Handwritten)

each worth 4% of the final mark (they open on a
Friday and close at 5 pm on the following
Wednesday: deadline in weeks 3, 5, 7, 9, 11).

* Final exam: worth 80% of the final mark.
Handwritten exam.

Further details available later.

10 Formative assignments:

Every week (except week 1) to be discussed in
the tutorial hour



Typed lecture notes (written by Prof Ginestra
Bianconi) available from QMPIlus.

« Handwritten notes and slides: Available on QMPIlus
after the lecture/tutorial

o Useful textbooks

-Newman, Networks: An Introduction, Oxford
University Press 2010

-Barabasi Network Science Cambridge University
Press 2016

-Latora, Nicosia, Russo, Complex Networks
Cambridge University Press 2017



Complex Networks

Introduction

Vito Latora

School of Mathematical Science, Queen Mary Univ of London
and
Dipartimento di Fisica, Universita’ di Catania



Complex networks...

..I.e. what can we learn of a
complex system by looking at the
backbone of its interactions ?




Two examples of
Complex Systems



Example 1: Bird flocks




Definitions of Complex System

We have many individuals plus their interactions.....

I
.....or even more than that !! «More is diferent”

Anderson, Science 1972
=~ '\&\._'

In a complex system, simple rules
give rise to complex behaviors

Complex
Systems



In a complex system, simple rules give rise to complex behaviors

Reynolds (1986): Flocking model

ALIGNMENT COHESION SEPARATION
IRV .
\> "\ |
|
}x 4\_ 4 | | A
Steer to the average heading  to move towards the average Steer to avoid crowding
of local flockmates position of local flockmates local flockmates

Vicsek et al. PRL 75(1995) 1226
Ballerini et al. PNAS 105(2008)1232

INTERACTIONS are the MAGIC INGREDIENT !!



We represent the interactions in a complex system
as a complex network !!!

It's Saturday, let's monkey around

Three months of
primate interactions
L. Wolfe (1992)

1) The animals are the nodes of the network

2) The interactions are the links of the network (can be weighted,

directed, time-varying, etc..)

3) Networks are usually sparse, and neither regular nor random



Example 2:

30.0)

D11



Example 2: The life of the party
(Moody et al. 2005)

A social network changing over time
Kamada-Kawai (springs)
Two types of nodes, three types of links

Light Gray: Not currently engaged with each other
but had an encounter earlier in the party

Qs
Qv

(‘-..w,
Dark Gray: Currently engaged, strangers pre-par(y' X

Blue: Currently engaged, knew
each other pre-party



The life of the party
(Moody et al. 2005)

95% of encounters with pre-known
Bridging (n=24)

"So far I'm doing all right. Iwentover to talk to six

O u tS i d e th e pa rty n etWO rk ( n —_ 1 8 ) people, but nine people have come over to talk to me."

n=40 knows only 10 (av=31). Ends up with 23 new
Homophilous pairings (n=30 + 31)

High physical attractiveness (n63) vs low (n82)
High self-monitors (size) (n=79)




It Is an exciting topic
because...

..networks are everywhere !!



Social Networks
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P S Bearman, J Moody, and K Stovel, Am J Soc (2004).

Relationships
In high school

...You can construct yourself your home-made

social network !!!



Social Networks

Elvis

Alessandra .\.
/ \ x Ludovica

Chiara /
A

Gabriella

Giuliana

\ Pierfrancesco

N )

| 7

< Emanuele

Gianluca Simone\

Friendships at the kindergarten of my daughter Elisa (2006)



Other three social examples

KARATE CLUB
Zachary 1977

COMICS

Simpson's Family Network

Family Ties
Friendship Ties
Work Ties

Barnie

Milhaus

Lenny Carl
Network Visualization: INFLOW 3.01 - http://www.orgnet.com



Zachary' s karate club

Outside club activities (3 years of observations before fission
by anthropologist Wayne Zachary)

16)  (21)
S ) g } S ~: — 4 9 /\:f _,L\/ 4 |
T a1 (29 S| o

(26 ./ AN o

Fission:16 members following 1 (the instructor Mr. Hi),
18 members following 34 (Mr. John A. the administrator)



The good and the bad collaboration net

Mathematical
Ecology

Researchers at the Santa Fe Institute, Newman PNAS 04



The good and the bad collaboration net

|
Abdussattar Shaikh
W Flight AA #11 - Crashed into WTC North m
| | F"ght AA #77 - Crashed into Pentagon Maied Moged Khalid Almihdhar
M Flight UA #93 - Crashed in Pennsylvania AN
M Flight UA #175 - Crashed into WTC South
M Other Associates of Hijackers Osama Awadallah
Mohamed Abdi
Rayed Mohammed Abdullah Hani Hanjour Nawwaf Alhazmi Ahmed Alnami
Salem Alhazmi®
Faisal Al Salmi
Habib Zacarias Moussaoui ||
Ahmed Alghamdi
T u _ Ll _
Lotfi Raissi Ahmed Al Haznawi Saeed Alghamdi®
o _
Hamza Alghamdi
| | il-al-
Zigd Jarrah Nabil-al-Marabh W . ht d
R Mohamed Atta_~ Abdul Aziz A-Omari™ o or y Alshenrit Raed Hijazi

network

Satam Sugami

e u — .
Sald Bahaji Marwan Al-Shehhi— Wail Alshehri

Zakariya Essabar Fayez Banihammad
|
Waleed Alshehri

Mamoun. Darkazanli Shaykh Saiid

|
Mamduh Mahmud Salim

Krebs, Connections 2001



Collaboration network of scientists working on networks !!!

Collaborations Between Network Scientists

This figure shows a network of collaborations
between scientists working on networks. It
was compiled from the bibliographies of two
review articles, by M. Newman (SIAM Review
2003) and by S. Boccaletti ef al. (Physics Re-
ports 2006). Vertices represent scientists whose
names appear as authors of papers in those bib-
liographies and an edge joins any two whose
names appear on the same paper. A small num-
ber of other references were added by hand
to bring the network up to date. This figure
shows the largest component of the resulting
network, which contains 379 individuals. Sizes
of vertices are proportional to their so-called
“community centrality.” Colors represent ver-
tex degrees with redder vertices having higher
degree.
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Happiness is......

Fowler, Christakis. 2008

““Dynamic spread of happiness in a large social
network: longitudinal analysis over 20 years in
the Framingham Heart Study. ”’

British Medical Journal 337, no. a2338: 1-9

Fig 1| Happiness clusters in the Framingham social network. Graphs show largest component of
friends, spouses, and siblings at exam 6 (centred on year 1996, showing 1181 individuals) and
exam 7 (year 2000, showing 1020 individuals). Each node represents one person (circles are
female, squares are male). Lines between nodes indicate relationship (black for siblings, red for
friends and spouses). Node colour denotes mean happiness of ego and all directly connected
(distance 1) alters, with blue shades indicating least happy and yellow shades indicating most
happy (shades of green are intermediate)



Happiness is...... having happy friends !!
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Fig 4| Alter type and happiness in the Framingham social
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significantly influence happiness, but only if they live close to



Tens of examples in biology
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S Maslov and K Sneppen, Science (2002).

Protein interaction network
in the Yeast (S.C.)

Eel River, California

Tuft-weaving chironomuds

Pl

Cladophora, epiphytic diatoms, Nossog

Food Webs



Brain networks: anatomical connectivity

C. elegans: layout of ganglia SO B et S
OF PRI i

Pharynx

Brenner et al, 1975 mapped every single -
nervous cell, synapses and gap junctions Neuron network

Cortical regions of macaque
Links between cortical areas



Brain networks: functional connectivity

MEG signals

time (s)

UClELEs, Functional
synchronization, .
causality connectivity
EEG, MEG, fMRI
Bullmore, Sporns, Nature Review Neuroscience 2009

signals



O

0 not forget man-made systems !!

-Hyperlinks between Web
pages

-- directed network

-- the largest net



>20 years of Complex Networks

Watts, Strogatz, Nature 393, 440 (1998) P

Barabasi, Albert, Science 286, 509 (1999) D

1) Characterize the structure of large real networks
2) Developing new models (growing graphs)

3) Dynamical processes (percolation, diffusion,
spreading, games, network of dynamical systems)



Complex Networks (MTHG6142)

* 1) Introduction

« 2) Basic properties

« 3) Centrality measures

* 4) Random graphs

* 5) Scale-free networks

* 6) Growing networks

* 7) Small-world networks

* 8) The configuration model



The small-world phenomenon

 FIRST experiment:
S.Milgram, Psychology Today 2, 60 (1967)

Of 170 chains started in Omaha, Nebraska,
126 dropped out and 44 reached destination

chain length 23456 78910

number of completed chains ‘2 498115122

Average distance 5.43

 Movie actors database N= 248243

0 1 2 3 4 o 6 78 o0

1 1181 71397 124975 25665 1787 196 22 2 23017

Average distance from _
Kevin Bacon 2.81 Average distance 3.65
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Clustering coefficient

Social networks frequently contain cliques
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ﬁ Watts-Strogatz (WS) small-world model

Regular Small-world
Increasing randomness
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Watts and Strogatz, Nature 339 (1998) 440




Degree distributions

Scale-free
networks

Barabasi-Albert
Rev. Mod. Phys 2001

Poisson distribution

Power-law distribution

§ 0.1
§ 0.01 ; P(k) ~k™’
0.001 '




P(k)
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Scale-free networks
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The Barabasi-Albert model

t=1 =2 {=3

1) Growth : a node (with m links) is added at every time step

2) Linear preferential attachment: Hn%i oC ki

P(k) >ck™

[—>00

Barabasi, Albert, Science 286, 509 (1999)



Epidemic spreading

o Transmission rate

SIS model 4] D 1. )

S = susceplible h Recovery rate 7= E

| = infected N 7 0 y S

di(t
il(t) = —pi(t) + Ak)i(¢)[1 — i(¢)] No endemic state (i*=0) if
O<O0O 1
* (k)
1 Healthy state
Infected state
Epidemic P — )‘/M

threshold ¢



Epidemic spreading in scale-free nets

_ Transmission rate

S_I_ I—QD%I_F I dl;ﬁt) = —ik(t)+/\k [1—’ik(t)] @k(t) k=0,....N—1
Recovery rate Or(t) = @[{ik’(t)k':u ‘N—l}] —

No epidemic threshold

Pastor-Satorras, Vespignani, PRL 86, 3200 (2001)



Structure and dynamics of complex nets

- Structural descriptors of networks from the real world

node properties, degree distributions, degree-degree correlations,
motifs, communities

- New graph models

random graphs with P(k), models of graph growth, correlated graphs

The structure affects the function

percolation, diffusion, spreading of diseases, searching information,
routing protocols, coupled dynamical systems

Albert, Barabasi, Rev. Mod. Phys. 74 (2002) 47
Newman, SIAM Rev. 45 (2003) 167
Boccaletti, Latora, Moreno, Chavez, Hwang, Phys Rep 424 (2006) 175



Complex Networks (MTHG6142)

* 1) Introduction

« 2) Basic properties

« 3) Centrality measures

* 4) Random graphs

* 5) Scale-free networks

* 6) Growing networks

* 7) Small-world networks

* 8) The configuration model



Typed lecture notes (written by Prof Ginestra
Bianconi in 2020/21) available from QMPIlus.

« Handwritten notes and slides: Available on QMPIlus
after the lecture/tutorial

o Useful textbooks

-Newman, Networks: An Introduction, Oxford
University Press 2010

-Barabasi Network Science Cambridge University
Press 2016

-Latora, Nicosia, Russo, Complex Networks
Cambridge University Press 2017
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COVER DESIGNED BY HART McLEOD LTD

Networks constitute the backbone of complex systems, from the human
brain to computer communications, transport infrastructures to online
social systems, metabolic reactions to financial markets. Characterising their
structure improves our understanding of the physical, biological, economic

and social phenomena that shape our world.

Rigorous and thorough, this textbook presents a detailed overview of the
new theory and methods of network science. Covering algorithms for graph
exploration, node ranking and network generation, among the others, the
book allows students to experiment with network models and real-world
data sets, providing them with a deep understanding of the basics of network
theory and its practical applications. Systems of growing complexity are
examined in detail, challenging students to increase their level of skill. An
engaging presentation of the important principles of network science makes
this the perfect reference for researchers and undergraduate and graduate
students in physics, mathematics, engineering, biology, neuroscience and

social sciences.

VITO LATORA is Professor of Applied Mathematics and Chair of Complex
Systems at Queen Mary University of London. Noted for his research in
statistical physics and in complex networks, his current interests include time-
varying and multiplex networks, and their applications to socio-economic

systems and to the human brain.

VINCENZO NICOSIA is Lecturer in Networks and Data Analysis at the
School of Mathematical Sciences at Queen Mary University of London. His
research spans several aspects of network structure and dynamics, and his
recent interests include multi-layer networks and their applications to big

datamodelling.

GIOVANNI RUSSO is Professor of Numerical Analysis in the Department
of Mathematics and Computer Science at the University of Catania, Italy,

focusing on numerical methods for partial differential equations, with

particular application to hyperbolic and kinetic problems.

CAMBRIDGE

UNIVERSITY PRESS

www.cambridge.org

ISBN 978-1-107-103
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