Complex Networks (MTH6142) 2023/24

WEEK 1 Lecture 1

- Module Convenor: Prof Vito Latora
- Lectures:
 - Wednesday 11:00-13:00 (2 hours)
 - Friday 11:00-12:00 (1 hour)
- Tutorials (from week 2):
 - Friday 12:00-13:00 (1 hour)
- Online forum: Please first ask questions here
- Office hours:
 - Monday 15:00-16:00,
 - Wednesday 13:00-14:00 (Learning Café, Room MB-B11)

Module Assessment

- Assessed courseworks: worth 20%
 - 5 courseworks (3 Quizzes, 2 Handwritten) each worth 4% of the final mark (they open on a Friday and close at 5 pm on the following Wednesday: deadline in weeks 3, 5, 7, 9, 11).
- Final exam: worth 80% of the final mark.
 Handwritten exam.
 Further details available later.

10 Formative assignments:

Every week (except week 1) to be discussed in the **tutorial** hour

Typed lecture notes (written by Prof Ginestra Bianconi) available from QMPlus.

 Handwritten notes and slides: Available on QMPlus after the lecture/tutorial

Useful textbooks

- -Newman, Networks: An Introduction, Oxford University Press 2010
- -Barabasi Network Science Cambridge University Press 2016
- -Latora, Nicosia, Russo, Complex Networks Cambridge University Press 2017

Complex Networks

Introduction

Vito Latora

School of Mathematical Science, Queen Mary Univ of London and

Dipartimento di Fisica, Universita' di Catania

Complex networks...

..i.e. what can we learn of a complex system by looking at the backbone of its interactions?

Two examples of Complex Systems

Example 1: Bird flocks

Definitions of Complex System

We have many individuals plus their interactions.....

....or even more than that !!

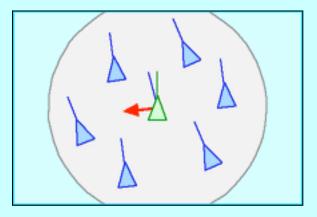
"More is different" Anderson, Science 1972

In a complex system, simple rules give rise to complex behaviors

In a complex system, simple rules give rise to complex behaviors

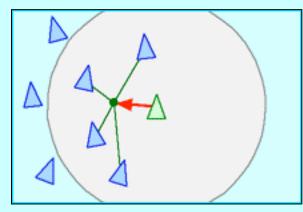
Reynolds (1986): Flocking model

ALIGNMENT



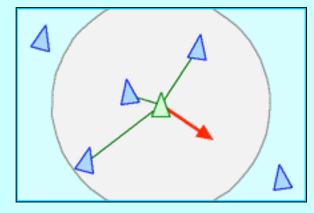
Steer to the average heading of local flockmates

COHESION



to move towards the average position of local flockmates

SEPARATION



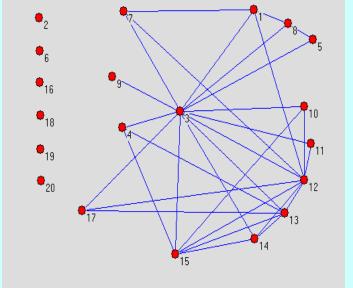
Steer to avoid crowding local flockmates

Vicsek et al. PRL 75(1995) 1226

Ballerini et al. PNAS 105(2008)1232

INTERACTIONS are the MAGIC INGREDIENT!!

We represent the interactions in a complex system as a complex network !!!



Three months of primate interactions L. Wolfe (1992)

- 1) The animals are the nodes of the network
- 2) The interactions are the links of the network (can be weighted, directed, time-varying, etc..)
- 3) Networks are usually sparse, and neither regular nor random

Example 2:

Example 2: The life of the party (Moody et al. 2005)

- A social network changing over time
- Kamada-Kawai (springs)
- Two types of nodes, three types of links

Light Gray: Not currently engaged with each other but had an encounter earlier in the party

Dark Gray: Currently engaged, strangers pre-party

Blue: Currently engaged, knew each other pre-party

The life of the party (Moody et al. 2005)

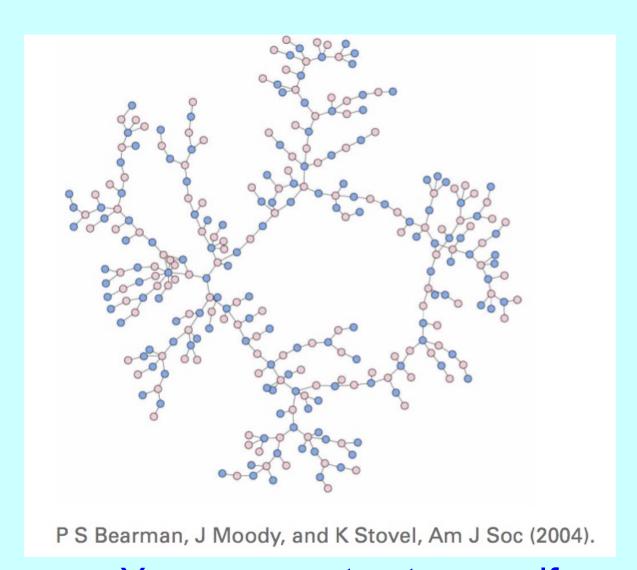
- Encounters shrink social distances
- 95% of encounters with pre-known
- Bridging (n=24)
- Outside the party network (n=18)
- n=40 knows only 10 (av=31). Ends up with 23 new
- Homophilous pairings (n=30 + 31)
- High physical attractiveness (n63) vs low (n82)
- High self-monitors (size) (n=79)

"So far I'm doing all right. I went over to talk to six people, but nine people have come over to talk to me."

It is an exciting topic because...

..networks are everywhere!!

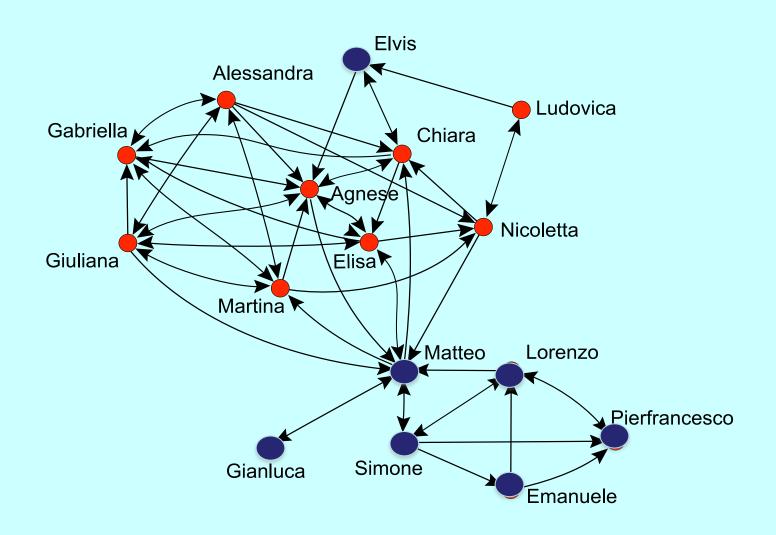
Social Networks



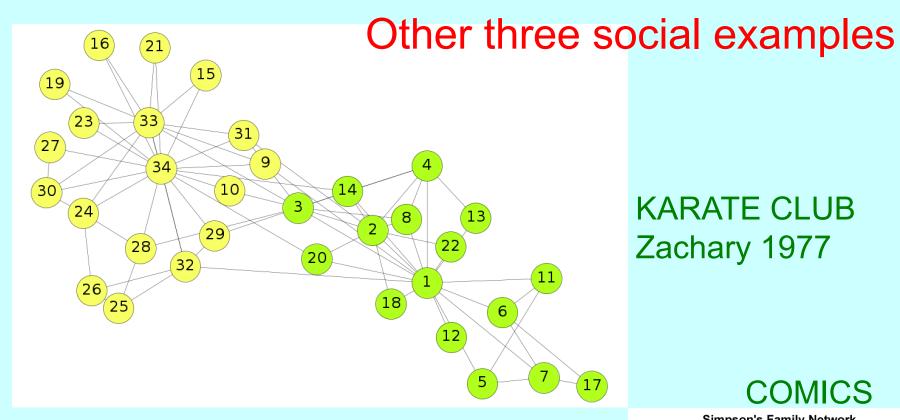
Relationships in high school

...You can construct yourself your home-made social network !!!

Social Networks



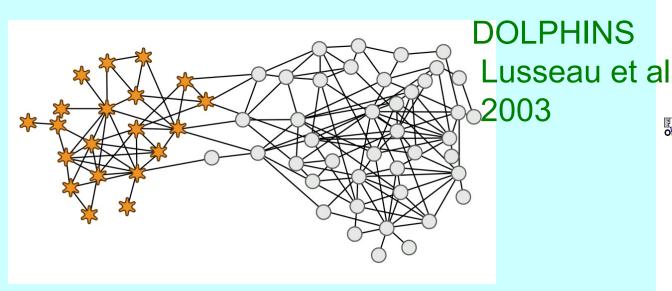
Friendships at the kindergarten of my daughter Elisa (2006)

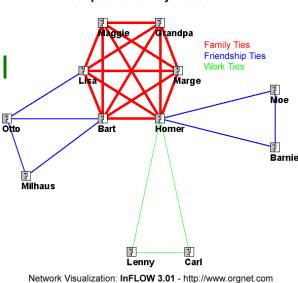


KARATE CLUB Zachary 1977

COMICS

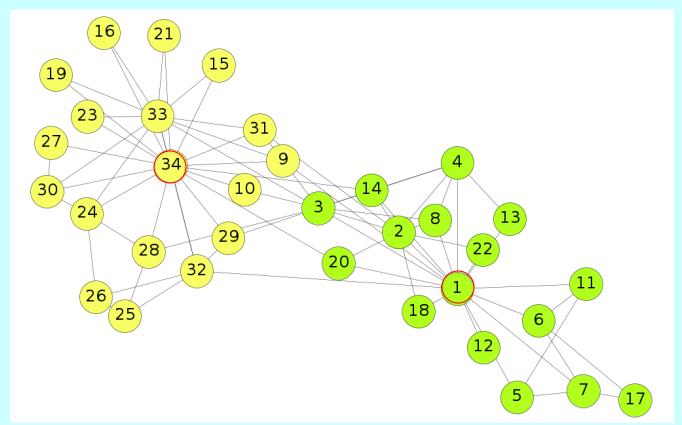
Simpson's Family Network





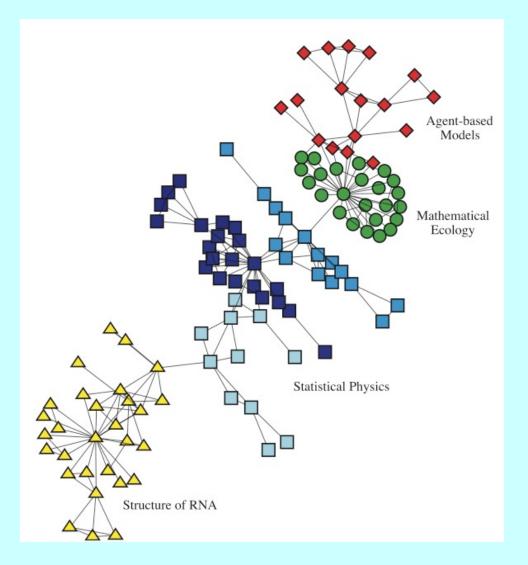
Zachary's karate club

Outside club activities (3 years of observations before fission by anthropologist Wayne Zachary)



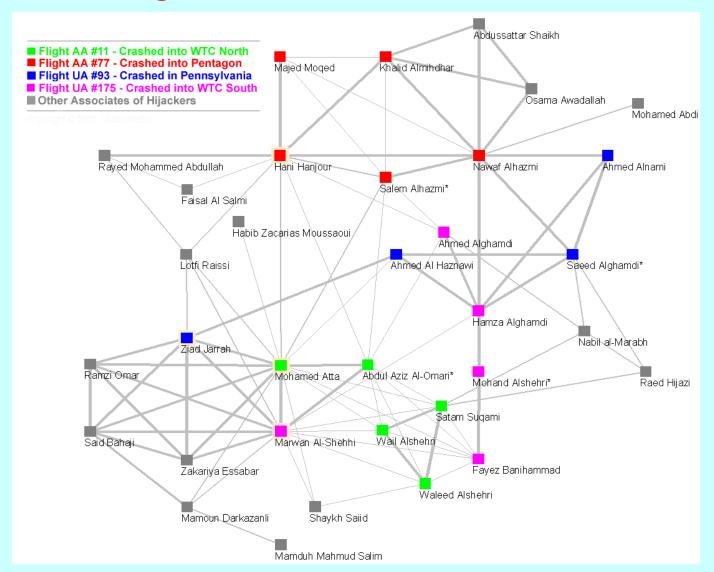
Fission:16 members following 1 (the instructor Mr. Hi), 18 members following 34 (Mr. John A. the administrator)

The good and the bad collaboration net



Researchers at the Santa Fe Institute, Newman PNAS 04

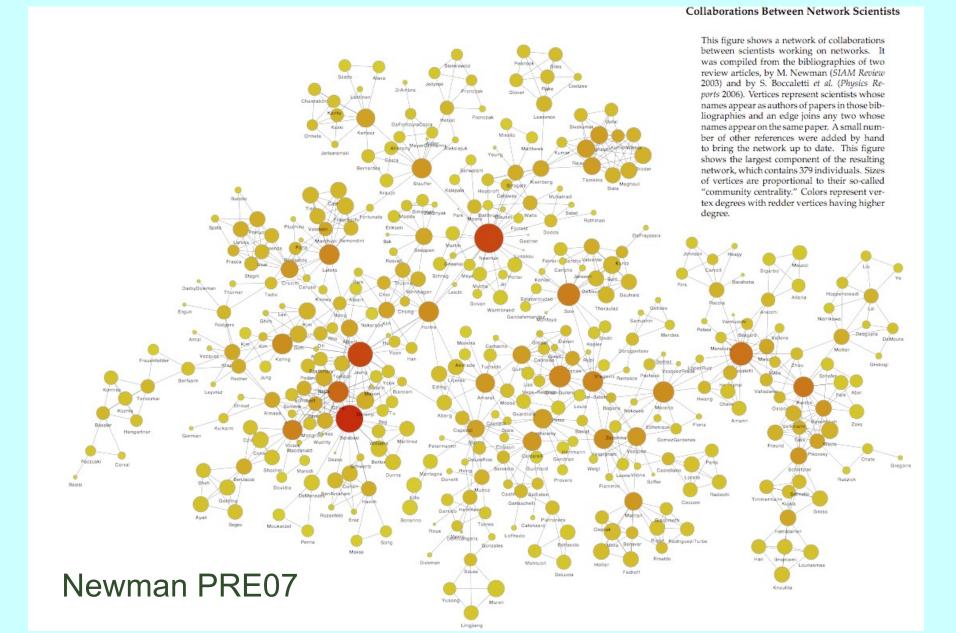
The good and the <u>bad</u> collaboration net



Weighted network

Krebs, Connections 2001

Collaboration network of scientists working on networks !!!



Happiness is.....

Fowler, Christakis. 2008

"Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study."

British Medical Journal 337, no. a2338: 1-9

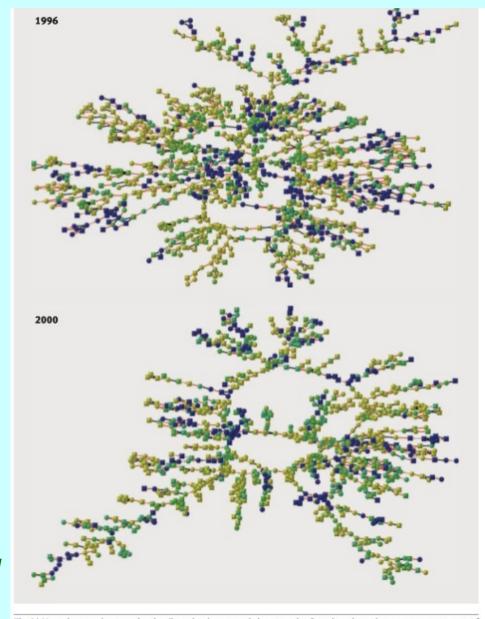


Fig 1 | Happiness clusters in the Framingham social network. Graphs show largest component of friends, spouses, and siblings at exam 6 (centred on year 1996, showing 1181 individuals) and exam 7 (year 2000, showing 1020 individuals). Each node represents one person (circles are female, squares are male). Lines between nodes indicate relationship (black for siblings, red for friends and spouses). Node colour denotes mean happiness of ego and all directly connected (distance 1) alters, with blue shades indicating least happy and yellow shades indicating most happy (shades of green are intermediate)

Happiness is.....having happy friends !!

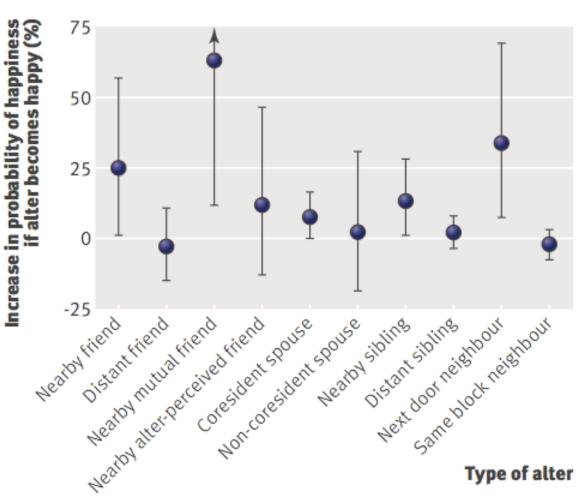
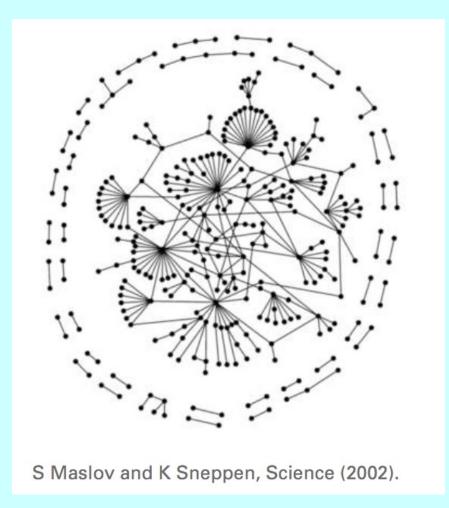
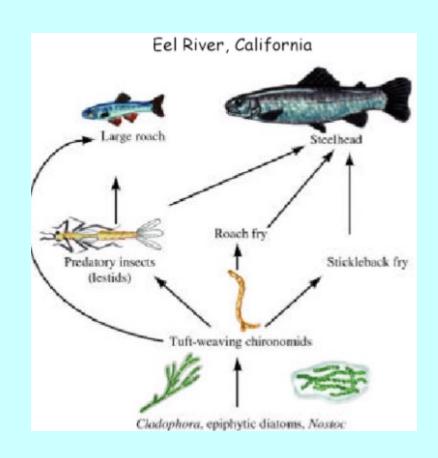


Fig 4 | Alter type and happiness in the Framingham social network. Friends, spouses, siblings, and neighbours significantly influence happiness, but only if they live close to

Tens of examples in biology



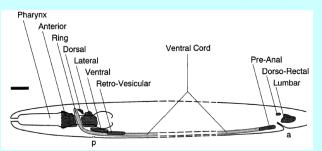
Protein interaction network in the Yeast (S.C.)

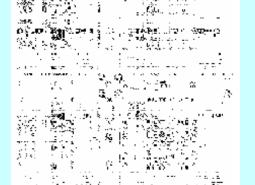


Food Webs

Brain networks: anatomical connectivity

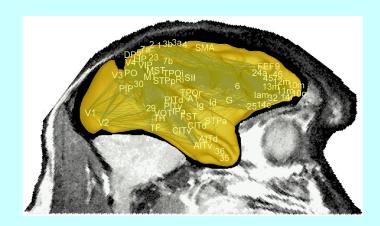
C. elegans: layout of ganglia



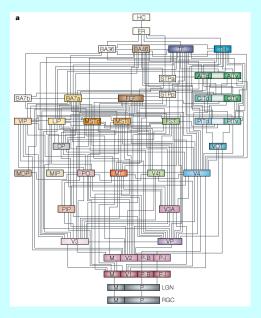


Brenner et al, 1975 mapped every single nervous cell, synapses and gap junctions

Neuron network



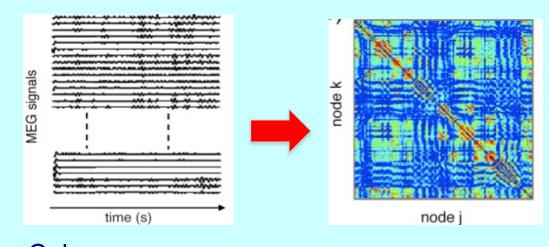
Cortical regions of macaque



Links between cortical areas

Brain networks: functional connectivity

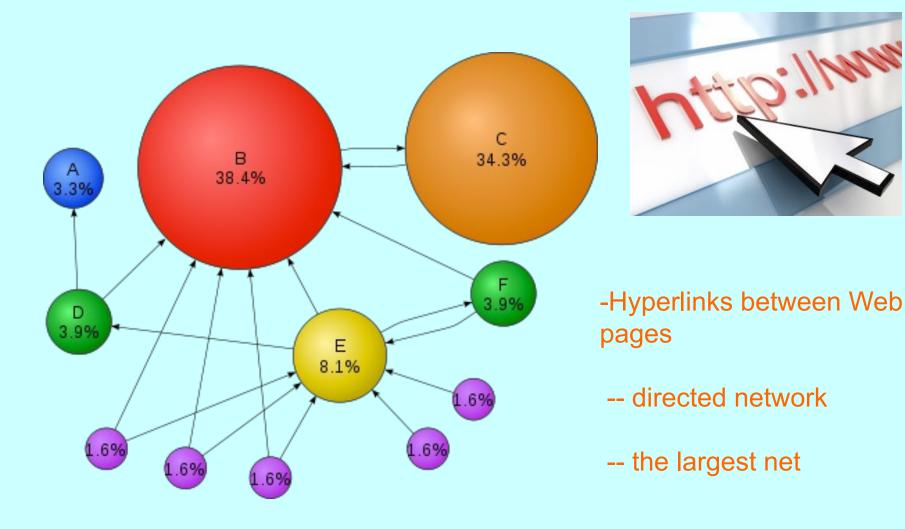
EEG, MEG, fMRI signals



Coherence, synchronization, causality

Functional connectivity

Do not forget man-made systems!!



>20 years of Complex Networks

Watts, Strogatz, Nature 393, 440 (1998)

Barabasi, Albert, Science 286, 509 (1999)

- 1) Characterize the structure of large real networks
- 2) Developing new models (growing graphs)
- 3) Dynamical processes (percolation, diffusion, spreading, games, network of dynamical systems)

Complex Networks (MTH6142)

- 1) Introduction
- 2) Basic properties
- 3) Centrality measures
- 4) Random graphs
- 5) Scale-free networks
- 6) Growing networks
- 7) Small-world networks
- 8) The configuration model

The small-world phenomenon

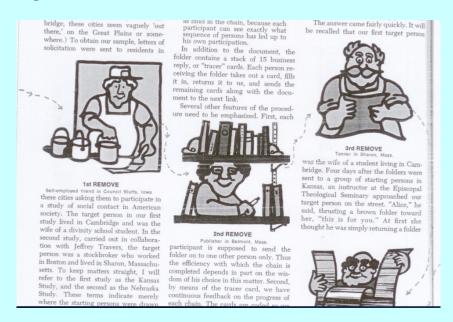
FIRST experiment:

S.Milgram, Psychology Today 2, 60 (1967)

Of 170 chains started in Omaha, Nebraska, 126 dropped out and 44 reached destination

chain length	$ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10$
number of completed chains	2 4 9 8 11 5 1 2 2

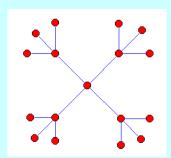
Average distance 5.43



Movie actors database N= 248243

0	1	2	3	4	5	6	7	8	∞
1	1181	71397	124975	25665	1787	196	22	2	23017

Small distances

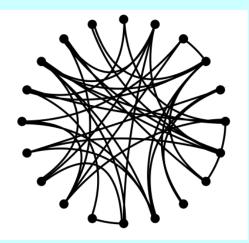


15

k friends in 1 step, k^2 in 2 steps...

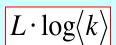
$$k^{L} \simeq N$$
 $L \simeq \frac{\log N}{\log k} \sim \log N$

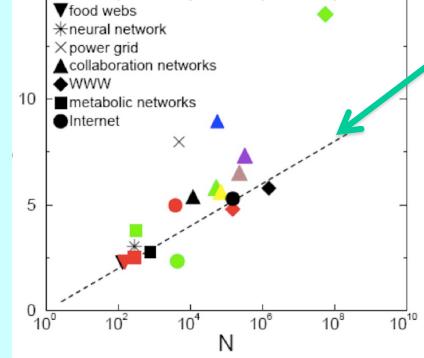
$$N = 10^9; k = 10^2 \rightarrow L \simeq 5$$



Random graphs

$$L_{rand} \approx \frac{\log N}{\log \langle k \rangle}$$





The problem is that your friends very often know each others!!

Clustering coefficient

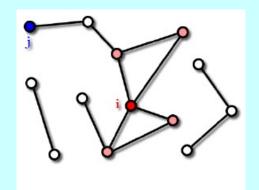
Social networks frequently contain cliques

$$C_{rand} \approx \frac{\langle k \rangle}{N}$$

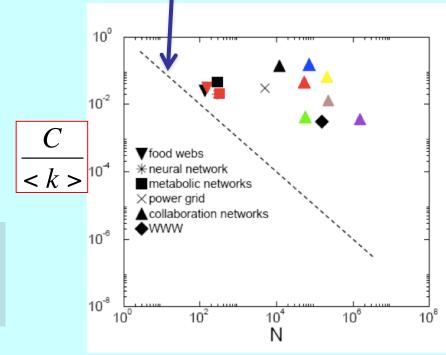
How close is the neighborhood of a node to a clique?

$$C_i = \frac{\# links}{\frac{k_i(k_i - 1)}{2}}$$

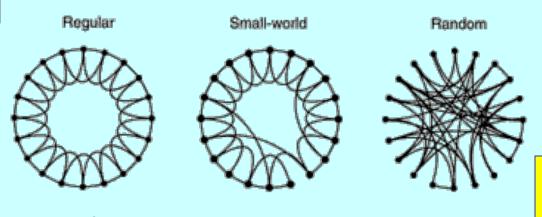
$$C_i = \frac{2}{6} = \frac{1}{3}$$



$$C = \frac{1}{N} \sum_{i} C_{i} \qquad 0 \le C \le 1$$



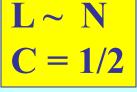
Watts-Strogatz (WS) small-world model

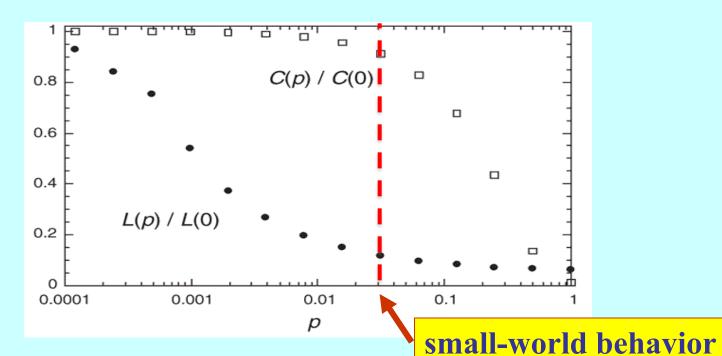


Increasing randomness

 $L \sim log N$ $C \sim 1/N$

p=1

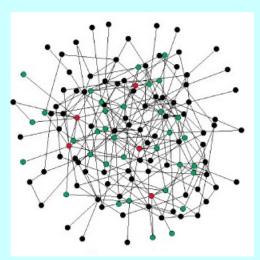


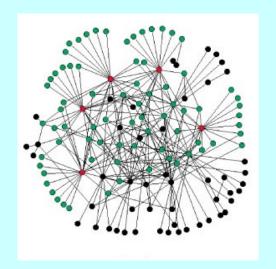


Watts and Strogatz, Nature 339 (1998) 440

Degree distributions

Random graphs

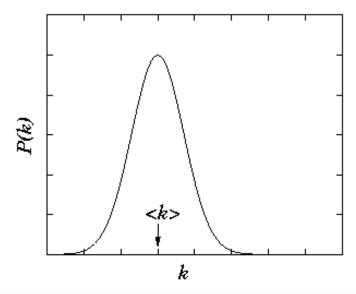




Scale-free networks

Barabasi-Albert Rev. Mod. Phys 2001

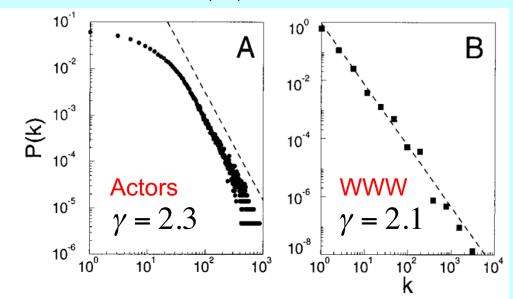
Poisson distribution





 $P(k) \approx k^{-\gamma}$

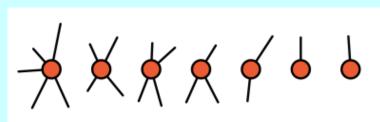
Scale-free networks

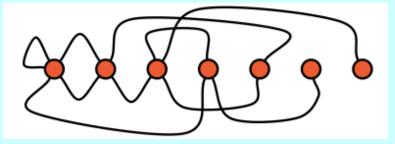


Networks	Exponent				
Internet	2.4				
WWW	2.1 2.7				
Protein	2.4				
Metabolic	2.2 2.1				
Coauthorship	2.5				
Movie actors	2.3				

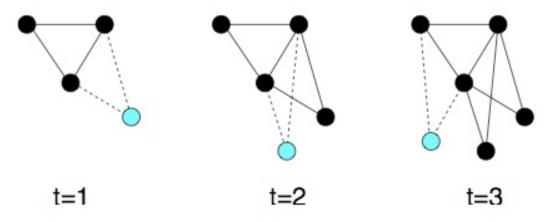
$$2 < \gamma \le 3 \Longrightarrow \begin{cases} \langle k \rangle \text{ finite} \\ \langle k^2 \rangle \to \infty \end{cases}$$

Generalized random graphs





The Barabasi-Albert model



- 1) Growth: a node (with m links) is added at every time step
- 2) Linear preferential attachment: $|\prod_{n \to i} \propto k_i|$

$$\prod_{n\to i} \propto k_i$$

$$P(k) \xrightarrow[t \to \infty]{} ck^{-3}$$

Barabasi, Albert, Science 286, 509 (1999)

Epidemic spreading

SIS model

S = susceptible I = infected

Transmission rate
$$S + I \xrightarrow{\widehat{\lambda}} I + I$$
Recovery rate
$$I \xrightarrow{\widehat{\mu}} S$$

$$\sigma = \frac{\lambda}{\mu}$$

$$\frac{di(t)}{dt} = -\mu i(t) + \lambda \langle k \rangle i(t) [1 - i(t)]$$

No endemic state $(i^*=0)$ if

$$\sigma < \sigma_c = \frac{1}{\langle k \rangle}$$

Epidemic threshold

$$\sigma_c$$

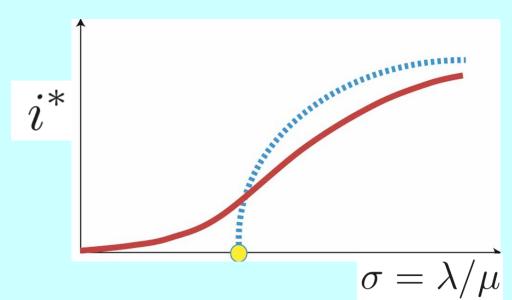
$$\sigma = \lambda/\mu$$

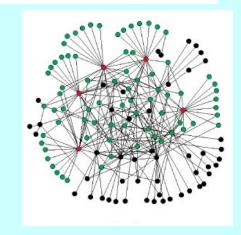
Epidemic spreading in scale-free nets

Transmission rate
$$S + I \xrightarrow{\widehat{\lambda}} I + I$$
Recovery rate
$$I \xrightarrow{\widehat{\mu}} S$$

$$S + I \xrightarrow{\bigcirc} I + I \qquad \frac{di_k(t)}{dt} = -i_k(t) + \lambda k \left[1 - i_k(t)\right] \Theta_k(t) \qquad k = 0, ..., N - 1$$

$$\Theta_k(t) = \Theta[\{i_{k'}(t)_{k'=0,\dots,N-1}\}] = \frac{1}{\langle k \rangle} \sum_{k'} k' P(k') i_{k'}(t)$$





$$\sigma_c = \frac{\langle k \rangle}{\langle k^2 \rangle} \xrightarrow[N \to \infty]{} 0$$

No epidemic threshold

Pastor-Satorras, Vespignani, PRL 86, 3200 (2001)

Structure and dynamics of complex nets

 Structural descriptors of networks from the real world node properties, degree distributions, degree-degree correlations, motifs, communities

- New graph models

random graphs with P(k), models of graph growth, correlated graphs

- The structure affects the function

percolation, diffusion, spreading of diseases, searching information, routing protocols, coupled dynamical systems

Albert, Barabasi, Rev. Mod. Phys. 74 (2002) 47 Newman, SIAM Rev. 45 (2003) 167 Boccaletti, Latora, Moreno, Chavez, Hwang, Phys Rep 424 (2006) 175

Complex Networks (MTH6142)

- 1) Introduction
- 2) Basic properties
- 3) Centrality measures
- 4) Random graphs
- 5) Scale-free networks
- 6) Growing networks
- 7) Small-world networks
- 8) The configuration model

Typed lecture notes (written by Prof Ginestra Bianconi in 2020/21) available from QMPlus.

 Handwritten notes and slides: Available on QMPlus after the lecture/tutorial

Useful textbooks

- -Newman, Networks: An Introduction, Oxford University Press 2010
- -Barabasi Network Science Cambridge University Press 2016
- -Latora, Nicosia, Russo, Complex Networks Cambridge University Press 2017

Ucit quias endam, imus. Os as rati officaes idunt ommoluptate nis poria sapicidem voluptas et vel evelibu scilluptate volestem earum aut id mil ium cum quae ommo expliquibea vellabo. Berum volendis niaerento quis dolore offici iliquodis exped mosti odi con non Somebody, somewhere

secab inissit dolut Andae odit quodis volora a delluptaque non ra nobitium que poriorro eatiore, cus ditiorrum que cum apit aut que recaboresti aut la Somebody, somewhere

conse volo eicilis ne lab inullores enimolupti natqui id quatiis et estis exeria nonseque nate voluptasped quas cusdae voluptatur rem quiatiatet fugit, quias debitas voles simpore, quos eaquas iliqui simus aliciist, inciurem ero iusam verum Somebody, somewhere

Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems, metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world.

eturestrum, atur, odigendis et fugia Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among the others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network reperia musae. Simus, officid modis theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging presentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, mathematics, engineering, biology, neuroscience and social sciences.

> VITO LATORA is Professor of Applied Mathematics and Chair of Complex Systems at Queen Mary University of London. Noted for his research in

qui cum net aborion sequatibus ium VINCENZO NICOSIA is Lecturer in Networks and Data Analysis at the School of Mathematical Sciences at Queen Mary University of London, His

CAMBRIDGE UNIVERSITY PRESS www.cambridge.org

NICOSIA

COMPLEX **NETWORKS**

Principles, Methods and Applications

VITO LATORA VINCENZO NICOSIA GIOVANNI RUSSO

