Main Examination period 2023 - January - Semester A

MTH6115/MTH6115P: Cryptography

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

```
You should attempt ALL questions. Marks available are shown next to the
questions.
```

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: B. Noohi, S. Sasaki

Question 1 [25 marks].

(a) In the following Caesar cipher the most frequent letter corresponds to e. Decrypt it. Show your working.

```
XBLLU THYFB UPCLY ZPAF
```

(b) Find an affine cipher $\theta_{a, b}$ on the English alphabet such that application of the cipher $\theta_{a, b}$ followed by $\theta_{7,1}$ is equivalent to applying the affine cipher $\theta_{9,3}$. Show your working.
(c) Consider the alphabet $\mathbb{Z}_{5}=\{0,1,2,3,4\}$.
(i) Determine the permutation on \mathbb{Z}_{5} resulting from applying the affine cipher $\theta_{3,2}$. Show your working.
(ii) Find a substitution table on this alphabet whose corresponding stream cipher is equivalent to the affine cipher $\theta_{3,2}$.
(d) Let N be a positive integer and consider the alphabet \mathbb{Z}_{N}.
(i) Explain why the addition table corresponding to the binary operation $i \oplus j=i-j(\bmod N)$ is a Latin square.
(ii) Find the adjugate of this Latin square. Show your working.
(iii) Is this Latin square suitable for a one-time pad on the alphabet \mathbb{Z}_{N} ? Justify your answer.

Solution

(a) [SEEN SIMILAR] The most frequent letter in the ciphertext is L, which by assumption is mapped to e. Therefore, to decrypt we need to shift to the left by 7 . [2] The answer is Queen Mary University. [2]
(b) [SEEN SIMILAR] We need to solve $\theta_{7,1} \circ \theta_{a, b}=\theta_{9,3}$. [2] The formula for composition is easy to work out (and is seen in class). The resulting system of equations is

$$
\begin{aligned}
7 a & \equiv 9 \\
7 b+1 & (\bmod 26), \\
7 & (\bmod 26) .
\end{aligned}
$$

[2] Solving the first equation we find $a \equiv 5(\bmod 26)$. Solving the second equation we find $b \equiv 4(\bmod 26)$. The answer is $\theta_{5,4}$ [2]
(c) [SEEN SIMILAR]
(i) We need to work out $\theta_{3,2}(x)=3 x+2$ for all $x \in \mathbb{Z}_{5}=\{0,1,2,3,4\}$. [1] The result is

$$
0 \mapsto 2,1 \mapsto 0,2 \mapsto 3,3 \mapsto 1,4 \mapsto 4 . \quad[2]
$$

(ii) The answer is the following substitution table with constant rows: [3]

	0	1	2	3	4
0	2	2	2	2	2
1	0	0	0	0	0
2	3	3	3	3	3
3	1	1	1	1	1
4	4	4	4	4	4

(d) [UNSEEN]
(i) For each fixed i, the operation $i \oplus *=i-*(\bmod N)$ is a permutation on \mathbb{Z}_{N}, and similarly for $* \oplus j=*-j(\bmod N)$ for any fixed j. [3]
(ii) The adjugate corresponds to the operation $a \ominus b$, where $c=a \ominus b$ is defined by $c \oplus b=a$. In this case, this relation gives $a \ominus b=a+b(\bmod N)$. [3]
(iii) Yes, any Latin square is suitable for a one-time pad. [3]

Question 2 [25 marks].

(a) Alice is using a one-time pad on the alphabet $\mathbb{Z}_{2}=\{0,1\}$ with addition modulo 2. The key for this one-time pad is generated by a primitive 5 -bit shift register. Eve intercepts the following ciphertext:

$$
000110001011011 .
$$

Her spies have informed her that the initial part of the plaintext is

$$
1000111011 \cdots .
$$

Decipher the full ciphertext. Show your working.
(b) Determine (with proof) whether $x^{5}+x^{3}+1$ is
(i) irreducible over \mathbb{Z}_{2},
(ii) primitive.
(c) Write down a pseudo-noise sequence of length 31, explaining carefully why your sequence is pseudo-noise. Determine the number of length 2 runs of 0 s in this sequence.
(d) Explain what goes wrong if in a public-key cryptosystem the go public function $g: S \rightarrow K$ from the set of secret keys to the set of public keys is in the complexity class ExpTime.

Solution

(a) [SEEN SIMILAR] Subtracting the first 10 digits of the plaintext from the ciphertext we obtain the first 10 bits of the key: 1001011001. [1] We then solve the following system of equations:

$$
\begin{aligned}
& 1=a_{0}+\quad+a_{3}, \\
& 1=\quad a_{2}+a_{4}, \\
& 0=a_{1}+\quad+a_{3}+a_{4}, \\
& 0=a_{0}+\quad+a_{2}+a_{3}, \\
& 1=a_{1}+a_{2} \text {. }
\end{aligned}
$$

[2] Solving the system, we find $a_{0}=1, a_{1}=0, a_{2}=1, a_{3}=0$ and $a_{4}=0$. [2] We can now generate the rest of the key:

$$
100101100111110 .
$$

[2] and subtract it from the cipher text to obtain the answer:

$$
100011101100101 .
$$

[1]
(b) [SEEN SIMILAR] We will show that this polynomial is primitive. This would then imply, by a theorem seen in lectures, that the polynomial is irreducible. [3] For instance, we can take the initial state 11001 and generate the output sequence of the shift register associated to the polynomial:
[1100110100100001010111011000111]110011010 • . .

This is periodic of period $31=2^{5}-1$, so the shift register, hence the polynomial, is primitive. [3]
(c) [SEEN SIMILAR] Take the sequence from the previous part. Since the shift register is primitive, by a theorem seen in lectures, it is pseudo-noise. [4] By the proof of the above theorem (or by inspection), the number of length 2 runs of 0 s in this sequence is $2^{5-2-2}=2$. [3]
[The only way they can answer the question is to start with a primitive 5-bit shift register. It is almost impossible to find the answer by guesswork.]
(d) [BOOKWORK] Bob will then not be able to create a public key in order for Alice to encrypt the message before sending it to him. [4]
(a) Paul has written an algorithm that finds the greatest common divisor of two polynomials $f(x)=x^{3}+a x^{2}+b x+c$ and $g(x)=x^{3}+a^{\prime} x^{2}+b^{\prime} x+c^{\prime}$ with positive integer coefficients in $a a^{\prime}+b b^{\prime}+c c^{\prime}$ steps. Is this a polynomial time algorithm? Justify your answer
(b) Assume that multiplying and adding two positive integers can be performed in polynomial time. Explain why the problem of computing the product of two arbitrary polynomials is in class P.
(c) Calculate $2^{1212}(\bmod 9211)$, reducing it to a positive number less than 9211. Show your calculations. [Hint. $9211=(151)(61)$.]
(d) Consider the map $T_{77}: \mathbb{Z}_{9211} \rightarrow \mathbb{Z}_{9211}, T_{77}(x) \equiv x^{77}(\bmod 9211)$. Is this map surjective? Justify your answer. How many positive integers $e<300$ are there such that $T_{e}: \mathbb{Z}_{9211} \rightarrow \mathbb{Z}_{9211}$ is injective? (Recall that $T_{e}(x) \equiv x^{e}(\bmod 9211)$.)

Solution

(a) [UNSEEN] The size of the problem is $\log _{2}(a)+\log _{2}(b)+\log _{2}(c)+\log _{2}\left(a^{\prime}\right)+$ $\log _{2}\left(b^{\prime}\right)+\log _{2}\left(c^{\prime}\right)$. [3] The expression $a a^{\prime}+b b^{\prime}+c c^{\prime}$ is not a polynomial in the size (it is essentially exponential), so the algorithm is not polynomial time. [2]
(b) [UNSEEN] If the polynomials have n and m coefficients, respectively, then by $m n$ multiplications and less than $m n$ additions one can compute the coefficients of the product polynomial. [3] Since each of these operations can be done using at most $P(k)$ operations, where k is the size of the problem, at most $2 m n P(k)$ operations are needed to compute the product polynomial. [2]
(c) [SEEN SIMILAR] We have $N=151 \cdot 61=9211$, and $\lambda(9211)=\operatorname{lcm}(150,60)=$ 300. [2] So, by Lemma A,

$$
2^{1212} \quad(\bmod 9211) \equiv 2^{12} \quad(\bmod 9211)
$$

and the latter is equal to 4096 modulo 9211. [2+2]
(d) [SEEN SIMILAR] We first note that T_{e} is injective if and only if it is surjective if and only if it is bijective [2] and for $T_{e}: \mathbb{Z}_{N} \rightarrow \mathbb{Z}_{N}$ to have this property is equivalent to $\operatorname{gcd}(e, \lambda(N))=1$. [2] In our example this is the case as $\operatorname{gcd}(77,300)=1$. Therefore, the map is surjective. [2] The number of $1<e<300$ satisfying $\operatorname{gcd}(e, 300)=1$ is equal to $\varphi(300)=2^{2-1}(2-1) \cdot(3-1) \cdot 5^{2-1}(5-1)=80$. [3]

Question 4 [25 marks].

(a) Explain what goes wrong if the modulus N used in RSA is divisible by 25.
(b) Alice and Bob are using the prime $p=89$ and a primitive root $g \bmod p$ for the Diffie-Hellman key establishment. However, they suspect that Eve might be tampering with their communication. Alice's secret number is $a=7$ and Bob's is $b=4$. Alice receives 5 from Bob and Bob receives 11 from Alice. Prove that the communication has indeed been tampered with by Eve.
(c) Bob has chosen $p=89, g=-8$ and $a=16$ for his El-Gamal key. Apart from the numbers being small, give another reason why this is a poor choice of key.
(d) In the previous part, what is Bob's public key? Encrypt the message $x=5$ for sending to Bob, with your random k being the sum of the last two digits of your student id. Simplify your answer as much as possible. [Hint. You may find $4^{6} \equiv 16^{3} \equiv 2(\bmod 89)$ useful in your calculations.]
(e) Alice and Bob are using the knapsack cipher and Bob's public key is

$$
(49,23,1,110,5,425,260,811) .
$$

Alice sends the message 1126 to Bob. Decrypt it. Show your working.

Solution

(a) [BOOKWORK] The modulus N of RSA should be a product of two distinct primes because otherwise, as seen in lectures, the encryption map $T_{e}: \mathbb{Z}_{N} \rightarrow \mathbb{Z}_{N}$ will not be injective even if $\operatorname{gcd}(e, \lambda(N))=1$. [3]
(b) [UNSEEN, but easy] By definition, $5=g^{b}$ and $11=g^{a}$ modulo 89. [2] The shared key should then be $g^{a b} \equiv 5^{7} \equiv(?) 11^{4}(\bmod 89)$, but the last congruence is wrong as $5^{7} \equiv 72$ and $11^{4} \equiv 45(\bmod 89)$. [3] This means at least one of the numbers 5 or 11 is wrong, hence the communication has been tampered with. [1]
(c) [SEEN SIMILAR] Because $-8 \equiv 81 \equiv 3^{4}(\bmod 89)$, so $81^{22} \equiv 1(\bmod 89)$ by Fermat. [3] Thus, 81 is not a primitive root (in fact, it has a relatively small order) and thus the Discrete Log Problem can be easily solved for powers of 81. [3]
(d) [SEEN SIMILAR] Bob's public key is (p, g, h), where $h=g^{a} \equiv(-8)^{16}=16$ $(\bmod 89) .[1]\left(T h e ~ l a t t e r ~ i s ~ e a s i l y ~ c o m p u t e d ~ b y ~ n o t i n g ~ t h a t ~(~-8)^{4} \equiv 2(\bmod 89).\right)$ [2] The encrypted message is $\left(g^{k}, x h^{k}\right)=\left((-8)^{k}, 5(16)^{k}\right)(\bmod 89)$. This should be easy to work out even by hand using the fact that $4^{6} \equiv 16^{3} \equiv 2(\bmod 89)$. [3]
(e) [UNSEEN] We can use the Greedy algorithm because up to re-ordering the sequence is super-increasing. [1] The answer is $1126=811+260+49+5+1$. (The numbers on the right hand side are found in the decreasing order.) [3]

End of Paper.

