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In this paper, we use the following conventions and notation:

• D2n is the group of symmetries of a regular n-sided polygon. Its elements are

1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s,

where r is a clockwise rotation through (360/n)◦, and s is a reflection. The group operation
is determined by the relations rn = s2 = 1 and sr = rn−1s.

• Q8 is the group {1,−1, i,−i, j,− j, k,−k}, in which

i2 = j2 = k2 = −1, i j = k, jk = i, ki = j, ji = −k, kj = −i, ik = − j.

• GL2(R) is the group of invertible 2 × 2 matrices over R, with the group operation being
matrix multiplication.

In any question, you may freely use the Coset Lemma.

Question 1.
(a) Give the definition of a group. [3]

Suppose G is a group and g ∈ G.

(b) Give the definition of the subgroup generated by g, and prove that it is a subgroup of G.
[You may use elementary rules for manipulating powers of elements.] [6]

(c) Give the definition of the order of g. [2]

(d) Prove that ord
(
g
)

= ord(g−1). [You should include the case where ord
(
g
)

= ∞.] [5]

(e) Let h =

(
−1 1
−1 0

)
∈ GL2(R). Find 〈h〉. [4]

(f) Suppose ord
(
g
)

= 20. Find elements h, k ∈ G such that ord(h) = 4, ord(k) = 5, and
hk−1 = k−1h = g. [You do not need to prove anything.] [5]
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Question 2.
(a) Define the terms normal subgroup and simple group. [You do not need to define what a

subgroup is.] [4]

(b) Suppose g ∈ Sn. Explain how to write down the disjoint cycle notation for g. [3]

(c) Suppose g, h ∈ Sn. How can you tell from the disjoint cycle notation whether g and h are
conjugate in Sn? [3]

(d) Write down two different elements g, h of S4 which are conjugate, and an element k such
that kgk−1 = h. [You do not need to prove anything.] [3]

(e) Define the alternating groupAn. [3]

(f) Prove that any element ofAn can be written as a product of 3-cycles. [5]

(g) Explain briefly how this result is used to prove thatAn is simple for n > 5. [4]

Question 3.
(a) Suppose G is a group and H a subgroup of G. Give the definition of a right coset of H in

G, and the index of H in G. [4]

(b) Suppose G = D12, and H = {1, r3, s, r3s}. Write down all the right cosets of H in G. [5]

(c) Suppose X is a right coset of H in G. Prove that |X| = |H|. [6]

(d) Now suppose N is a normal subgroup of G. Give the definition of the quotient group
G/N. [You do not have to prove that G/N is a group, but you should show that the group
operation is well-defined.] [6]

(e) Now suppose G = S4, and
X = {(1 3), (1 2 3 4)} .

Write down a subgroup H 6 G and an element g ∈ G such that X = Hg. [You do not have
to prove anything, but explaining your reasoning may help you to obtain marks if you make
errors in calculation.] [4]
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Question 4. Suppose G and H are groups.

(a) Give the definition of a homomorphism from G to H. [2]

(b) Give the definition of the image and kernel of a homomorphism. [4]

(c) Suppose φ : G→ H is a homomorphism. Prove that

G
ker(φ)

� im(φ).

[You may assume that φ(1) = 1 and φ(g−1) = φ(g)−1 for g ∈ G. You may also assume that
ker(φ) P G and im(φ) 6 H.] [8]

(d) Define the terms automorphism and inner automorphism. [4]

(e) Suppose φ : Q8 → Q8 is a homomorphism satisfying

φ(i) = − j, φ( j) = k.

Is φ an automorphism of Q8? Is it an inner automorphism? Justify your answers. [7]

Question 5. Suppose G is a finite group.

(a) Suppose H 6 G and N P G. Define the set NH, and prove that it is a subgroup of G. [6]

(b) What is the order of NH, in terms of the orders of N, H and N ∩H? [You do not need to
prove anything.] [2]

Now suppose p is a prime number.

(c) Give the definition of a Sylow p-subgroup of G. [You do not need to define what a subgroup
is.] [2]

(d) Suppose P,Q are Sylow p-subgroups of G, and that Q P G. Prove that P = Q. [7]

(e) Give a precise statement of Sylow’s Theorem 3. [3]

(f) Using this theorem, show that there is only one group of order 85 up to isomorphism.
[You may use Lagrange’s Theorem.] [5]
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Question 6.
(a) Suppose G is a group and X is a set. Give the definition of an action of G on X. [3]

(b) Suppose π is an action of G on X, and x ∈ X. Give the definition of the orbit of x and the
stabiliser of x. Define what it means to say that π is transitive. [5]

(c) Suppose {1} , N P G. Define an action π of G on N by

πg(n) = gng−1 for all g ∈ G, n ∈ N.

Prove that π really is an action. Is π transitive? Justify your answer. [7]

(d) Give a precise statement of the Orbit-Stabiliser Theorem. [3]

(e) Now let G be the symmetry group of a triangular prism:

What is |G|? Justify your answer. [7]

Question 7.
(a) Suppose H and K are groups. Define the direct product H × K. [You do not have to prove

that H × K is a group, but you should say what the group operation is.] [3]

(b) Suppose G is a group, and h, k ∈ G. Define the commutator of h and k. [2]

(c) Find the commutator of r and rs inD8. [Show your working.] [3]

(d) Now suppose H,K are normal subgroups of a group G, such that H ∩ K = {1} and
HK = G. Using commutators, prove that hk = kh for all h ∈ H and k ∈ K. [4]

(e) Hence prove that G � H × K. [8]

(f) Is C9 isomorphic to C3 × C3? Justify your answer. [5]

End of Paper.
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