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In this paper, we use the following convention: D2n is the group of symmetries of a regular
n-sided polygon. Its elements are

1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s,

where r is a clockwise rotation through (360/n)◦, and s is a reflection. The group operation is
determined by the relations rn = s2 = 1 and sr = rn−1s.

Question 1.
(a) Give the definition of a group. [2]

(b) Suppose G = {a, b, c}, with a binary operation given by the following table.

a b c
a b a c
b a b c
c c c b

Which of the group axioms does G satisfy? Justify your answer. [4]

(c) Define what is meant by the index of a subgroup, and state Lagrange’s Theorem. [5]

(d) If G is a group and f ∈ G, what is meant by the order of f ? [2]

Now suppose G =
{
1, g, g2, g3, g4, g5

}
is the cyclic group of order 6.

(e) Write down the order of each element of G. [3]

(f) Write down a subgroup H of G containing exactly two elements. [2]

(g) Find all the right cosets of H. [3]

(h) Write down a Cayley table for G/H. [4]

Question 2. Write an essay on the symmetric groups and the alternating groups. [You should
include precise definitions and statements of results, illustrated by examples, and give some proofs,
with outlines of longer proofs.] [25]
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Question 3. Suppose G is a group and X is a set.

(a) Define what is meant by an action of G on X. [2]

(b) Suppose N is a normal subgroup of G, and define πg : N→ N for each g ∈ G by
πg(n) = gng−1. Prove that π is an action of G on N. [5]

(c) Suppose π is an action of G on X, and x ∈ X. Define what is meant by the stabiliser and
the orbit of x. Prove that the stabiliser of x is a subgroup of G. [6]

(d) Give precise statements of the Orbit-Stabiliser Theorem and the Orbit-Counting Lemma. [6]

(e) Suppose we colour the edges of a square, and we regard two colourings as the same if
one can be transformed into the other by a symmetry of the square. If we have four
colours available, how many different colourings are there? Justify your answer. [6]

Question 4. [In this question, you may assume any results you need about actions of groups.]
Suppose p is a prime.

(a) What does it mean to say that a finite group is a p-group? [2]

(b) Suppose

G =



1 0 0
a 1 0
b c 1


∣∣∣∣∣∣∣∣ a, b, c ∈ Fp

 ,
where Fp denotes the set {0, . . . , p− 1}with addition and multiplication modulo p. Find a
normal subgroup of G of order p, and another normal subgroup of order p2. [You do not
have to prove anything.] [7]

(c) Give the definition of a Sylow p-subgroup. [2]

(d) Prove that every finite group has at least one Sylow p-subgroup. [You may assume that if p

does not divide b, then the binomial coefficient
(pab

pa

)
is not divisible by p.] [8]

(e) Find a Sylow 2-subgroup ofD12. Is this subgroup normal? Justify your answer. [6]
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Question 5. Suppose G is a group.

(a) If f , g ∈ G, what does it mean to say that f and g are conjugate? [2]

(b) Give an example of a group G and elements f , g such that f 2 and g2 are conjugate but f
and g are not. [You do not need to prove anything.] [3]

(c) Prove that conjugacy is an equivalence relation on G. [5]

(d) Find (with proof) all the conjugacy classes inD10. [You may assume that two conjugate
elements have the same order, and you may state without proof what the orders of the elements of
D10 are.] [6]

(e) Give the definition of a commutator, and the commutator subgroup G′. [4]

(f) Suppose n is a commutator in G, and h ∈ G. Prove that hnh−1
∈ G′. [5]

Question 6.
(a) Define what is meant by a homomorphism between two groups, and by an

automorphism of a group. [3]

(b) Prove that the inverse of an automorphism is an automorphism. [4]

(c) Suppose G is a group, and define φ : G→ G by φ(g) = g−1. What property does G need
to have for φ to be a homomorphism? Explain your answer. [5]

(d) Find (with proof) all automorphisms of C6. [5]

(e) Define the terms inner automorphism and outer automorphism. [4]

(f) Write down an outer automorphism ofD8. [You should write down where each element of
D8 maps to, but you do not need to prove anything.] [4]
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Question 7.
(a) Define the terms normal subgroup and simple group. [You do not need to define what a

group or a subgroup is.] [4]

(b) Suppose G is a group, H 6 G and N P G. Define the group NH, and prove that it is a
subgroup of G. [6]

(c) Give an example of a group G and two subgroups H,N of G such that NH is not a
subgroup of G. Justify your answer briefly. [5]

(d) Give a precise statement of the Third Isomorphism Theorem. [3]

(e) Suppose G is a group and N is a normal subgroup of G such that N and G/N are simple.
If M is a normal subgroup of G other than {1},N or G, prove that M � G/N. [You may
assume that there is no H such that N < H C G.] [7]

End of Paper.
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