
RELATIVITY – MTH6132

PROBLEM SET 6

1. The Bondi metric, used in the study of gravitational radiation, has line element
in the coordinate (u, r, θ, φ) given by

ds2 =

(
f

r
e2β − g2r2e2α

)
du2 + 2e2βdudr + 2gr2e2αdu dθ

−r2
(
e2αdθ2 + e−2α sin2 θdφ2

)
.

Here, f, g, α and β are functions of (u, r, θ, φ). Using these coordinates, write down
the matrix representation of the metric gab. Hint: First write down xa.

2. Start with spherical coordinates (r, θ, φ)) in R3 and the line element given by

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2.

(a) Given the contravariant vector Xa = (1, r, r2), find Xa.

(b) Given the covariant vector Ya = (0,−r2, r2 cos2 θ), find Y a.

3. A type (0,2) tensor is conserved if

∇aTab = 0.

Show that if Xa satisfies the equation ∇(aXb) = 0, and Tab is symmetric, then the
vector Va = TabX

b satisfies
∇aVa = 0.

4. Let Sb
c denote a (1, 1) tensor.

(a) Give the formula for the covariant derivative ∇aSb
c in terms of the connection

coefficients.

(b) Show that ∇aδb
c = 0.

(c) Show that if the dimension of the manifold is 4, then δa
a = 4.

5. Using that ∇agbc = 0 and ∇cδa
b = 0, show that ∇ag

bc = 0. Hint: how are gab
and gab related to each other?

6. Consider the two-dimensional space given by

ds2 = eydx2 + exdy2.

(a) Calculate the covariant and contravariant components of the metric tensor for
this spacetime.

(b) Employ the formula for the Christoffel symbols (connection) given in the notes
to calculate the components Γ1

11, Γ
1
12 and Γ2

11 of the connection. Note the
identification (x, y) → (x1, x2) is used here.



7. Let Xa be the tangent vector to a geodesic. Recall the norm of this vector,

|X|2 = gabX
aXb.

Using the Leibniz property of the covariant derivative, show that the norm of the
tangent vector is conserved along geodesics, i.e. that:

Xa∇a

(
|X|2

)
= 0.

Therefore, if a geodesic is timelike (or spacelike, or null, respectively) at one point,
then it is timelike (or spacelike, or null, respectively) along its entire length.

8. V a is called a Killing vector if it satisfies the following equation

2∇(aVb) = ∇aVb +∇bVa = 0.

Let Xa be the tangent vector to a geodesic, let V a be a Killing vector, and define the
scalar E by

E ≡ VaX
a = gabV

aXb.

Show that E is conserved along geodesics, i.e. that Xa∇aE = 0.

9. The metric for a particular 2-dimensional spacetime is given by

ds2 = −e2Ardt2 + dr2

where A is an arbitrary constant. Calculate all the components of the connection
Γa

bc for this metric.

10. Calculate the Christoffel symbols for the metric on R2 in polar coordinates and
use this to write down the geodesic equations. Can you solve these equations to show
that geodesics on the plane must be straight lines?

11. Consider the general static spherically symmetric spacetime in four dimensions:

ds2 = −e2A(r)dt2 + e2B(r)dr2 + r2(dθ2 + sin2 θ dϕ2) .

(a) Compute the Christoffel symbols.

(b) The components of the Riemann tensor.

(c) The components of the Ricci tensor.

12. Consider the following spacetime:

ds2 = −
(
1− 2M

r

)
dv2 + 2 dv dr + r2(dθ2 + sin2 θ dϕ2) ,

where M > 0 is a constant.

(a) Compute the Christoffel symbols.

(b) The components of the Riemann tensor.



(c) The components of the Ricci tensor.

13. Consider the following line element:

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2) .

(a) By direct calculation or otherwise, show that the only non-vanishing Christoffel
symbols are Γt

xx = Γt
yy = Γt

zz = a a′ and Γx
tx = Γx

xt = Γy
ty = Γy

yt = Γz
tz = Γz

zt =
a′

a
, where a′ ≡ da

dt
. (Hint: note that by symmetry you only need to compute

Γt
xx and Γx

tx.)

(b) Show that the tt and xx components of the Ricci tensor are given by:

Rtt = −3 a′′(t)

a(t)
,

Rxx = a(t) a′′(t) + 2 a′(t)2 .

Further Exploration: Recall that the transformation from Cartesian coordinates
in R3 to spherical coordinates can be written as

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

• Letting unprimed coordinates be (x, y, z) and primed coordinates be (r, θ, φ),
write down the Jacobian matrix associated with the transformation above.

• Express the basis vectors for spherical coordinates {er, eθ, eφ} as expansions in
terms of the Cartesian basis {ex, ey, ez}.

• What happens when we differentiate these basis vectors? Verify that

∂er
∂r

= 0,
∂er
∂θ

=
1

r
eθ,

∂er
∂φ

=
1

r
eφ,

∂eθ
∂r

=
1

r
eθ,

∂eφ
∂r

=
1

r
eφ.

Compute the remaining partial derivatives of the other two basis vectors.

• What have you actually accomplished? It turns out that when you differentiate
basis vectors, you will just get an expansion in terms of the basis vectors with
“weights” or weighting coefficients. These coefficients are precisely the Γa

bc

discussed in class!


