RELATIVITY - MTH6132

PROBLEM SET 5

- 1. What is the transformation law for a
 - (a) Type (1,0) tensor? Type (0,2) tensor?
- (b) Using part (a), how does the object $T_{ab}V^b$ transform? Is it a tensor?
- **2.** If A^a is a contravariant vector and B_a is a covariant vector, then show that A^aB_a is a scalar (hint: show that $A'^aB'_a = A^aB_a$)
- **3.** If $T^{ab}A_aB_b$ is a scalar for any covariant vectors A_a, B_b , show that T^{ab} transforms like a (2,0) tensor.
- 4. The parts of this problem are unrelated.
 - (a) Let ϕ be a scalar function. Prove that $\frac{\partial^2 \phi}{\partial x^a \partial x^b}$ is not a type (0,2) tensor.
 - (b) Prove that if the equation $V_{ab} = V_{ba}$ is true in a given coordinate frame, it is true in all frames (i.e. prove that it has a tensorial property).
- 5. (Note: the example on pages 42/43 of the notes will help you with this question). Let x^a and x'^a be two coordinate systems:

$$x^{a} = (x^{1}, x^{2}) := (x, y)$$

 $x'^{a} = (x'^{1}, x'^{2}) := (\rho, \theta)$

defined by the relations

$$x = e^{\rho} \cos \theta$$
$$y = e^{\rho} \sin \theta.$$

These coordinates are known as log-polar coordinates.

- (a) Compute $\frac{\partial x'^a}{\partial x^b}$ and $\frac{\partial x^a}{\partial x'^b}$ for $a, b \in \{1, 2\}$ (hint: you will have to invert the above relations to find ρ and θ in terms of x, y).
- (b) Using $A'^a = \frac{\partial x'^a}{\partial x^b} A^b$, compute A'^1 and A'^2 in terms of A^1 and A^2 .
- (c) Using $A'_a = \frac{\partial x^b}{\partial x'^a} A_b$, compute A'_1 and A'_2 in terms of A_1 and A_2 .

Note how the expressions differ: contravariant and covariant tensors are distinct geometric objects!

- **6.** If $R^a{}_{bcd}$ is a tensor of type (1,3), show that its contraction given by $R_{bd} = R^a{}_{bad}$ is a tensor of type (0,2).
- 7. Show that if the contravariant tensor A^{ab} is symmetric and the covariant tensor B_{ab} is antisymmetric, then $A^{ab}B_{ab}=0$.
- 8. Show that any general (non-symmetric) covariant tensor of rank two, T_{ab} say, can be expressed as the sum of its symmetric part, $T_{(ab)}$, and anti-symmetric part, $T_{[ab]}$. Hence prove that $g^{ab}T_{ab} = g^{ab}T_{(ab)}$, where g^{ab} is a general metric tensor.
- 9. Starting from the Minkowski line element in Cartesian coordinates

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2,$$

show that in spherical coordinates $x = r \sin \theta \sin \varphi$, $y = r \sin \theta \cos \varphi$, $z = r \cos \theta$, the line element is given by

$$ds^2 = -dt^2 + dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2.$$

Hint: Start with Problem Set 3, Exercise #8.

10. Consider a one-form A_a and the associated object

$$F_{ab} \equiv 2 \,\partial_{[a} A_{b]} = \partial_a A_b - \partial_b A_a \,.$$

- (a) Is F_{ab} a (0,2) tensor?
- (b) Consider a rank 2 anti-symmetric tensor B_{ab} , i.e., $B_{ab} = B_{[ab]}$. Compute $\nabla_{[a}B_{bc]}$. Is $\partial_{[a}B_{bc]}$ a tensor?
- 11. Consider the following line element:

$$ds^{2} = -dt^{2} + a(t)^{2}(dx^{2} + dy^{2} + dz^{2}).$$
(1)

- (a) By direct calculation or otherwise, show that the only non-vanishing Christoffel symbols are $\Gamma^t_{xx} = \Gamma^t_{yy} = \Gamma^t_{zz} = a \, a'$ and $\Gamma^x_{tx} = \Gamma^x_{xt} = \Gamma^y_{yt} = \Gamma^y_{yt} = \Gamma^z_{zz} = \Gamma^z_{zt} = \frac{a'}{a}$, where $a' \equiv \frac{da}{dt}$. (*Hint:* note that by symmetry you only need to compute Γ^t_{xx} and Γ^x_{tx}).
- (b) Consider the following vector field V^a :

$$V = \sqrt{1 + \frac{k^2}{a(t)^2}} \frac{\partial}{\partial t} + \frac{k}{a(t)^2} \frac{\partial}{\partial x}$$

where k is a constant and a(t) is the same function as in (1). Equivalently, in components,

$$V^{a} = \left(\sqrt{1 + \frac{k^{2}}{a(t)^{2}}}, \frac{k}{a(t)^{2}}, 0, 0\right). \tag{2}$$

Is this vector tangent to a geodesic?

(c) Consider the following the tensor

$$K_{ab} = a(t)^2 (g_{ab} + U_a U_b)$$

where $U^a = (\partial_t)^a$ is the vector tangent to the t-direction (i.e., $U^a = (1, 0, 0, 0)$), g_{as} is the spacetime metric (1) and a(t) is the same function as in (1). Compute the parallel transport of the quantity $K_{bc}V^bV^c$ along a curve with tangent V^a .