RELATIVITY - MTH6132

PROBLEM SET 5

1. What is the transformation law for a
(a) Type $(1,0)$ tensor? Type $(0,2)$ tensor?
(b) Using part (a), how does the object $T_{a b} V^{b}$ transform? Is it a tensor?
2. If A^{a} is a contravariant vector and B_{a} is a covariant vector, then show that $A^{a} B_{a}$ is a scalar (hint: show that $A^{\prime a} B_{a}^{\prime}=A^{a} B_{a}$)
3. If $T^{a b} A_{a} B_{b}$ is a scalar for any covariant vectors A_{a}, B_{b}, show that $T^{a b}$ transforms like a $(2,0)$ tensor.
4. The parts of this problem are unrelated.
(a) Let ϕ be a scalar function. Prove that $\frac{\partial^{2} \phi}{\partial x^{a} \partial x^{b}}$ is not a type $(0,2)$ tensor.
(b) Prove that if the equation $V_{a b}=V_{b a}$ is true in a given coordinate frame, it is true in all frames (i.e. prove that it has a tensorial property).
5. (Note: the example on pages $42 / 43$ of the notes will help you with this question). Let x^{a} and $x^{\prime a}$ be two coordinate systems:

$$
\begin{aligned}
x^{a} & =\left(x^{1}, x^{2}\right):=(x, y) \\
x^{\prime a} & =\left(x^{\prime 1}, x^{\prime 2}\right):=(\rho, \theta)
\end{aligned}
$$

defined by the relations

$$
\begin{aligned}
& x=e^{\rho} \cos \theta \\
& y=e^{\rho} \sin \theta .
\end{aligned}
$$

These coordinates are known as log-polar coordinates.
(a) Compute $\frac{\partial x^{\prime a}}{\partial x^{b}}$ and $\frac{\partial x^{a}}{\partial x^{b}}$ for $a, b \in\{1,2\}$ (hint: you will have to invert the above relations to find ρ and θ in terms of $x, y)$.
(b) Using $A^{\prime a}=\frac{\partial x^{\prime a}}{\partial x^{b}} A^{b}$, compute $A^{\prime 1}$ and $A^{\prime 2}$ in terms of A^{1} and A^{2}.
(c) Using $A_{a}^{\prime}=\frac{\partial x^{b}}{\partial x^{\prime a}} A_{b}$, compute A_{1}^{\prime} and A_{2}^{\prime} in terms of A_{1} and A_{2}.

Note how the expressions differ: contravariant and covariant tensors are distinct geometric objects!
6. If $R^{a}{ }_{b c d}$ is a tensor of type $(1,3)$, show that its contraction given by $R_{b d}=R^{a}{ }_{b a d}$ is a tensor of type $(0,2)$.
7. Show that if the contravariant tensor $A^{a b}$ is symmetric and the covariant tensor $B_{a b}$ is antisymmetric, then $A^{a b} B_{a b}=0$.
8. Show that any general (non-symmetric) covariant tensor of rank two, $T_{a b}$ say, can be expressed as the sum of its symmetric part, $T_{(a b)}$, and anti-symmetric part, $T_{[a b]}$. Hence prove that $g^{a b} T_{a b}=g^{a b} T_{(a b)}$, where $g^{a b}$ is a general metric tensor.
9. Starting from the Minkowski line element in Cartesian coordinates

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}
$$

show that in spherical coordinates $x=r \sin \theta \sin \varphi, y=r \sin \theta \cos \varphi, z=r \cos \theta$, the line element is given by

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \varphi^{2}
$$

Hint: Start with Problem Set 3, Exercise \#8.
10. Consider a one-form A_{a} and the associated object

$$
F_{a b} \equiv 2 \partial_{[a} A_{b]}=\partial_{a} A_{b}-\partial_{b} A_{a} .
$$

(a) Is $F_{a b}$ a $(0,2)$ tensor?
(b) Consider a rank 2 anti-symmetric tensor $B_{a b}$, i.e., $B_{a b}=B_{[a b]}$. Compute $\nabla_{[a} B_{b c]}$. Is $\partial_{[a} B_{b c]}$ a tensor?
11. Consider the following line element:

$$
\begin{equation*}
d s^{2}=-d t^{2}+a(t)^{2}\left(d x^{2}+d y^{2}+d z^{2}\right) . \tag{1}
\end{equation*}
$$

(a) By direct calculation or otherwise, show that the only non-vanishing Christoffel symbols are $\Gamma_{x x}^{t}=\Gamma_{y y}^{t}=\Gamma_{z z}^{t}=a a^{\prime}$ and $\Gamma_{t x}^{x}=\Gamma_{x t}^{x}=\Gamma_{t y}^{y}=\Gamma_{y t}^{y}=\Gamma_{t z}^{z}=\Gamma_{z t}^{z}=$ $\frac{a^{\prime}}{a}$, where $a^{\prime} \equiv \frac{d a}{d t}$. (Hint: note that by symmetry you only need to compute $\Gamma_{x x}^{t}$ and $\left.\Gamma_{t x}^{x}\right)$.
(b) Consider the following vector field V^{a} :

$$
V=\sqrt{1+\frac{k^{2}}{a(t)^{2}}} \frac{\partial}{\partial t}+\frac{k}{a(t)^{2}} \frac{\partial}{\partial x}
$$

where k is a constant and $a(t)$ is the same function as in (1). Equivalently, in components,

$$
\begin{equation*}
V^{a}=\left(\sqrt{1+\frac{k^{2}}{a(t)^{2}}}, \frac{k}{a(t)^{2}} 0,0\right) \tag{2}
\end{equation*}
$$

Is this vector tangent to a geodesic?
(c) Consider the following the tensor

$$
K_{a b}=a(t)^{2}\left(g_{a b}+U_{a} U_{b}\right)
$$

where $U^{a}=\left(\partial_{t}\right)^{a}$ is the vector tangent to the t-direction (i.e., $U^{a}=(1,0,0,0)$), $g_{a s}$ is the spacetime metric (1) and $a(t)$ is the same function as in (1). Compute the parallel transport of the quantity $K_{b c} V^{b} V^{c}$ along a curve with tangent V^{a}.

