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Question 1 [30 marks]. One dimensional systems on R and S

(a) Investigate the fixed points of each of the following systems on R and sketch their
phase portraits.

(i) ẋ = sin(x)− sinh(x), [5]

(ii) ẋ = cos(x)(1 − cos(x)). [5]

(b) Find a function f : R → R, such that the phase portrait of the system ẋ = f (x) is
consistent with the xt-plane solution curve plots sketched in Fig. 1. [5]

Figure 1

(c) Find an equation ẋ = f (x) whose phase portrait is qualitatively the same as that
sketched in Fig. 2 [5]

Figure 2

(d) Consider the system ẋ = f (x) where the differentiable function f : R → R satisfies
f (x) > 0 for x > X0 ∈ R. Show that if the system has a fixed point, then at least one of
one of them is unstable. [5]
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(e) Consider the solution curves shown in Fig. 3 for the system θ̇ = f (θ), θ ∈ S, in the
θt-plane with the lines θ = 0 and θ = 2π identified. Find a function f : S → R such that
the solution curves of θ̇ = f (θ) are topologically compatible with those of Fig. 3. [5]

t

Figure 3
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Question 2 [34 marks]. Bifurcations on the line

(a) Consider the dynamical system on the line R, given by the ordinary differential equation

ẋ = 1 + rx − x2 − rx3, (1)

which depends on the real parameter r.
For system (1),

(i) Investigate and display the set of fixed points in the xr-plane. [6]

(ii) identify potential bifurcation points (x, r) = (x∗, r∗) with r ̸= 0 for the system (1), [6]

(iii) Use appropriate Taylor expansions to reduce the equation to normal from at each of the
bifurcation points, and hence classify their bifurcation types. [6]

(iv) Illustrate on the xr-plane the complete set of different qualitative types of phase portrait
that can occur as the parameter r ∈ R varies. [6]

(v) In one sentence, describe what happens to the fixed points of the system as r → 0. [4]

(b) Consider the dynamical system on the line R, given by the ordinary differential equation

ẋ = Ar + Bx2 + Cxr (2)

which depends on the real parameter r. Why is (x, r) = (0, 0) a potential bifurcation point?
When A, B, C are all non-zero, calculate the non-singular changes of variable x and parameter
r which reduce Eqn (2) to the form

ẏ = ν + y2. (3)

[6]
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Question 3 [36 marks]. Two-dimensional systems

Consider the system
ẋ = y , ẏ = x − x3 + y , (4)

where (x, y) ∈ R2.

(a) Compute the fixed points of the two dimensional dynamical system given by (4). For each
fixed point perform a linear stability analysis and classify the type of fixed point. Where
possible, find the eigenvectors corresponding to real eigenvalues. [8]

(b) Sketch the flow in the phase plane in a small neighbourhood of each fixed point. [9]

(c) Construct a nullcline diagram for this system as follows:

(i) Compute the nullclines of the system of differential equations. [2]

(ii) Sketch the nullclines in the phase plane. [4]

(iii) The nullclines partition the phase plane into different regions. For each region, and on
each nullcline, indicate the direction of the flow. [4]

(d) Using the results from parts a) - c), sketch the full phase portrait of the two dimensional
system. The phase portrait should be consistent with the diagram produced in part c). If the
system has a saddle fixed point then sketch the form of its unstable and stable manifolds in
the phase portrait. [9]

End of Paper.
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