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Question 1.

(a) (i) The list (v1, . . . ,vn) is linearly independent if, for all c1, . . . ,cn ∈K, it is the case that
c1v1 + · · ·cnvn = 0 implies c1 = · · ·= cn = 0; (ii) it is spanning if every vector v ∈V
may be expressed in the form v = c1v1 + · · ·cnvn for some c1, . . . ,cn ∈K; (iii) it is a
basis if it is both linearly independent and spanning.

(b) (i) Yes, (ii) no, (iii) no, and (iv) yes.

(c) The span is

〈u1, . . . ,ur〉= {a1u1 +a2u2 + · · ·+arur : a1,a2, . . . ,ar ∈K}.

(d) Since the list u1, . . . ,ur is not spanning, there is a vector in V that is not in the span
〈u1, . . . ,ur〉. Following the hint, let ur+1 ∈V be such a vector. We claim that the
extended list u1, . . . ,ur,ur+1 is linearly independent. Suppose not; then there exist
a1, . . . ,ar+1 ∈K, not all zero, such that a1u1 + · · ·arur +ar+1ur+1 = 0. Since the list
u1, . . . ,ur is linearly independent, we must have ar+1 6= 0. Dividing through by ar+1, we
obtaining an expression for ur+1 as a linear combination of u1, . . . ,ur. But this
contradicts the choice of ur+1.

(e) Repeatedly extend the list as in part (d) until the resulting list is spanning. (This must
occur eventually, as V is finite dimensional.) The resulting list is spanning and linearly
independent and hence a basis.

Parts (a, c–e) are bookwork; part (b) contains easy tests of understanding of basic definitions.
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Question 2.

(a) The matrices are, respectively,1 1 0
0 1 0
0 0 1

 ,
1 0 0

0 0 1
0 1 0

 and

c 0 0
0 1 0
0 0 1

 .
(b) (i) det(A) is unchanged, (ii) the absolute value of det(A) is unchanged but its sign is

inverted, and (iii) det(A) is multiplied by c.

(c) Elementary row operations correspond to multiplication on the left by an elementary
matrix. From part (b), multiplying a matrix A on the left by elementary matrix Pi has the
effect of multiplication det(A) by a scalar, say ci ∈K. Thus

det(A) = det(Pt · · ·P1I) = c1c2 . . .ct det(I) = c1c2 . . .ct , and
det(AB) = det(Pt · · ·P1B) = c1c2 . . .ct det(B).

It follows that det(AB) = det(A)det(B).

(d) With A and B as above,

det(B) = det(P−1AP) = det(P−1)det(A)det(P)

= det(A)det(P−1)det(P) = det(A)det(I)
= det(A).

Parts (b–d) are bookwork; (a) is an immediate consequence of bookwork.
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Question 3.

(a) Ker(α) = {v ∈V : α(v) = 0} and Im(α) = {α(v) : v ∈V}.

(b) dim(Ker(α)+ Im(α))+dim(Ker(α)∩ Im(α)) = dim(Ker(α))+dim(Im(α)).

(c) π is a projection on V if it is a linear map on V and π2 = π .

(d) (i) yes, (ii) no, (iii) no and (iv) yes.

(e) Suppose v ∈ Ker(π)∩ Im(π). Since v ∈ Ker(π) we have π(v) = 0. Since v ∈ Im(π) we
also have π(v) = v. Putting these together, v = 0.

(f) From part (e), we have dim(Ker(π)∩ Im(π)) = 0. Then, from part (b),

dim(Ker(π)+ Im(π)) = dim(Ker(π))+dim(Im(π))−dim(Ker(π)∩ Im(π))

= dim(Ker(π))+dim(Im(π)).

Parts (a–c) are bookwork; (e) is a step in the proof of a theorem in the course, so is bookwork
but needs to be recognised as such; (d) just requires applying the definition, and (f) is an easy
deduction.
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Question 4.

(a) The characteristic polynomial of a matrix A is defined to be pA(x) = det(xI−A).

(b) The Cayley-Hamilton Theorem states that pA(A) = O for all matrices A, where O is the
zero matrix.

(c) The minimal polynomial of A is the monic polynomial mA(x) of smallest degree such
that mA(A) = 0.

(d) The characteristic polynomial pα(x) has no repeated factors, so the minimal polynomial
is also (x−1)(x2 +1). Not all the factors are linear, so α is not diagonalisable.

(e) Over C we have pα(x) = (x−1)(x− i)(x+ i) = mα(x). The minimal polynomial is a
product of distinct linear factors, so α is diagonalisable.

(f) For α to be diagonalisable, we must have mα(x) = x−1. (There can be no repeated
factor.) So any α other than the identity is not diagonalisable. An example is the linear
map represented by the matrix A =

(
1 1 0
0 1 0
0 0 1

)
. The identity map is clearly diagonalisable.

Parts (a–c) are bookwork; parts (d–f) are deductions from basic results/tests of understanding,
with (f) being definitely harder.
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Question 5.

(a) The adjoint α∗ : V →V is the unique linear map satisfying v ·α∗(w) = α(v) ·w, for all
v,w ∈V . The linear map α is self-adjoint if α∗ = α .

(b) Subspaces U and W are orthogonal if u ·w = 0 for all u ∈U and w ∈W .

(c) The orthogonal complement of U is U⊥ = {v ∈V : v ·u = 0, for all u ∈U}.

(d) Let u ∈U be arbitrary. By definition, u · v = 0. Then

α(u) · v = u ·α∗(v) = u ·α(v) = u · (λv) = λ (u · v) = 0,

where we use the facts that α is self-adjoint and v is a eigenvalue of α with
eigenvalue λ . Thus, α(u) is orthogonal to v and hence in U .

(e) The proof is by induction on the dimension of V . The first step of the proof is to show
the existence of an eigenvector v of α with eigenvalue λ (say). As in part (d), let U be
the subspace of all vectors orthogonal to v. From (d) we know that the restriction of α

to U is a linear map on U , which is also self-adjoint. By the induction hypothesis, there
is a basis of U consisting of orthogonal eigenvectors of α . Augmenting this basis with v
yields an orthogonal basis for V .

Parts (a–c) are bookwork; part (d) is (disguised) bookwork, provided it is recognised as
a step in the proof of the Spectral Theorem; part (e) tests whether the student
understands the proof of the Spectral Theorem “in essence”.

End of Paper.
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