Main Examination period 2018

MTH6140: Linear Algebra II (Solutions)

Duration: 2 hours

Apart from this page, you are not permitted to read the contents of this question paper until instructed to do so by an invigilator.

You should attempt ALL questions. Marks available are shown next to the questions.

Only non-programmable calculators that have been approved from the college list of non-programmable calculators are permitted in this examination. Please state on your answer book the name and type of machine used.

Complete all rough work in the answer book and cross through any work that is not to be assessed.

Possession of unauthorised material at any time when under examination conditions is an assessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have any notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If you do, raise your hand and give them to an invigilator immediately.

It is also an offence to have any writing of any kind on your person, including on your body. If you are found to have hidden unauthorised material elsewhere, including toilets and cloakrooms, it shall be treated as being found in your possession. Unauthorised material found on your mobile phone or other electronic device will be considered the same as being in possession of paper notes. A mobile phone that causes a disruption in the exam is also an assessment offence.

Exam papers must not be removed from the examination room.

Examiners: M. Jerrum, M. Fayers

Question 1.

(a) (i) The list $\left(v_{1}, \ldots, v_{n}\right)$ is linearly independent if, for all $c_{1}, \ldots, c_{n} \in \mathbb{K}$, it is the case that $c_{1} v_{1}+\cdots c_{n} v_{n}=\mathbf{0}$ implies $c_{1}=\cdots=c_{n}=0$; (ii) it is spanning if every vector $v \in V$ may be expressed in the form $v=c_{1} v_{1}+\cdots c_{n} v_{n}$ for some $c_{1}, \ldots, c_{n} \in \mathbb{K}$; (iii) it is a basis if it is both linearly independent and spanning.
(b) (i) Yes, (ii) no, (iii) no, and (iv) yes.
(c) The span is

$$
\left\langle u_{1}, \ldots, u_{r}\right\rangle=\left\{a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{r} u_{r}: a_{1}, a_{2}, \ldots, a_{r} \in \mathbb{K}\right\} .
$$

(d) Since the list u_{1}, \ldots, u_{r} is not spanning, there is a vector in V that is not in the span $\left\langle u_{1}, \ldots, u_{r}\right\rangle$. Following the hint, let $u_{r+1} \in V$ be such a vector. We claim that the extended list $u_{1}, \ldots, u_{r}, u_{r+1}$ is linearly independent. Suppose not; then there exist $a_{1}, \ldots, a_{r+1} \in \mathbb{K}$, not all zero, such that $a_{1} u_{1}+\cdots a_{r} u_{r}+a_{r+1} u_{r+1}=\mathbf{0}$. Since the list u_{1}, \ldots, u_{r} is linearly independent, we must have $a_{r+1} \neq 0$. Dividing through by a_{r+1}, we obtaining an expression for u_{r+1} as a linear combination of u_{1}, \ldots, u_{r}. But this contradicts the choice of u_{r+1}.
(e) Repeatedly extend the list as in part (d) until the resulting list is spanning. (This must occur eventually, as V is finite dimensional.) The resulting list is spanning and linearly independent and hence a basis.

Parts (a, c-e) are bookwork; part (b) contains easy tests of understanding of basic definitions.

Question 2.

(a) The matrices are, respectively,

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ccc}
c & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) (i) $\operatorname{det}(A)$ is unchanged, (ii) the absolute value of $\operatorname{det}(A)$ is unchanged but its sign is inverted, and (iii) $\operatorname{det}(A)$ is multiplied by c.
(c) Elementary row operations correspond to multiplication on the left by an elementary matrix. From part (b), multiplying a matrix A on the left by elementary matrix P_{i} has the effect of multiplication $\operatorname{det}(A)$ by a scalar, say $c_{i} \in \mathbb{K}$. Thus

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(P_{t} \cdots P_{1} I\right)=c_{1} c_{2} \ldots c_{t} \operatorname{det}(I)=c_{1} c_{2} \ldots c_{t}, \quad \text { and } \\
\operatorname{det}(A B) & =\operatorname{det}\left(P_{t} \cdots P_{1} B\right)=c_{1} c_{2} \ldots c_{t} \operatorname{det}(B) .
\end{aligned}
$$

It follows that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
(d) With A and B as above,

$$
\begin{aligned}
\operatorname{det}(B) & =\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A) \operatorname{det}(P) \\
& =\operatorname{det}(A) \operatorname{det}\left(P^{-1}\right) \operatorname{det}(P)=\operatorname{det}(A) \operatorname{det}(I) \\
& =\operatorname{det}(A) .
\end{aligned}
$$

Parts (b-d) are bookwork; (a) is an immediate consequence of bookwork.

Question 3.

(a) $\operatorname{Ker}(\alpha)=\{v \in V: \alpha(v)=\mathbf{0}\}$ and $\operatorname{Im}(\alpha)=\{\alpha(v): v \in V\}$.
(b) $\operatorname{dim}(\operatorname{Ker}(\alpha)+\operatorname{Im}(\alpha))+\operatorname{dim}(\operatorname{Ker}(\alpha) \cap \operatorname{Im}(\alpha))=\operatorname{dim}(\operatorname{Ker}(\alpha))+\operatorname{dim}(\operatorname{Im}(\alpha))$.
(c) π is a projection on V if it is a linear map on V and $\pi^{2}=\pi$.
(d) (i) yes, (ii) no, (iii) no and (iv) yes.
(e) Suppose $v \in \operatorname{Ker}(\pi) \cap \operatorname{Im}(\pi)$. Since $v \in \operatorname{Ker}(\pi)$ we have $\pi(v)=\mathbf{0}$. Since $v \in \operatorname{Im}(\pi)$ we also have $\pi(v)=v$. Putting these together, $v=\mathbf{0}$.
(f) From part (e), we have $\operatorname{dim}(\operatorname{Ker}(\pi) \cap \operatorname{Im}(\pi))=0$. Then, from part (b),

$$
\begin{aligned}
\operatorname{dim}(\operatorname{Ker}(\pi)+\operatorname{Im}(\pi)) & =\operatorname{dim}(\operatorname{Ker}(\boldsymbol{\pi}))+\operatorname{dim}(\operatorname{Im}(\boldsymbol{\pi}))-\operatorname{dim}(\operatorname{Ker}(\boldsymbol{\pi}) \cap \operatorname{Im}(\boldsymbol{\pi})) \\
& =\operatorname{dim}(\operatorname{Ker}(\boldsymbol{\pi}))+\operatorname{dim}(\operatorname{Im}(\boldsymbol{\pi}))
\end{aligned}
$$

Parts (a-c) are bookwork; (e) is a step in the proof of a theorem in the course, so is bookwork but needs to be recognised as such; (d) just requires applying the definition, and (f) is an easy deduction.

Question 4.

(a) The characteristic polynomial of a matrix A is defined to be $p_{A}(x)=\operatorname{det}(x I-A)$.
(b) The Cayley-Hamilton Theorem states that $p_{A}(A)=O$ for all matrices A, where O is the zero matrix.
(c) The minimal polynomial of A is the monic polynomial $m_{A}(x)$ of smallest degree such that $m_{A}(A)=0$.
(d) The characteristic polynomial $p_{\alpha}(x)$ has no repeated factors, so the minimal polynomial is also $(x-1)\left(x^{2}+1\right)$. Not all the factors are linear, so α is not diagonalisable.
(e) Over \mathbb{C} we have $p_{\alpha}(x)=(x-1)(x-i)(x+i)=m_{\alpha}(x)$. The minimal polynomial is a product of distinct linear factors, so α is diagonalisable.
(f) For α to be diagonalisable, we must have $m_{\alpha}(x)=x-1$. (There can be no repeated factor.) So any α other than the identity is not diagonalisable. An example is the linear map represented by the matrix $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. The identity map is clearly diagonalisable.

Parts (a-c) are bookwork; parts (d-f) are deductions from basic results/tests of understanding, with (f) being definitely harder.

Question 5.

(a) The adjoint $\alpha^{*}: V \rightarrow V$ is the unique linear map satisfying $v \cdot \alpha^{*}(w)=\alpha(v) \cdot w$, for all $v, w \in V$. The linear map α is self-adjoint if $\alpha^{*}=\alpha$.
(b) Subspaces U and W are orthogonal if $u \cdot w=0$ for all $u \in U$ and $w \in W$.
(c) The orthogonal complement of U is $U^{\perp}=\{v \in V: v \cdot u=0$, for all $u \in U\}$.
(d) Let $u \in U$ be arbitrary. By definition, $u \cdot v=0$. Then

$$
\alpha(u) \cdot v=u \cdot \alpha^{*}(v)=u \cdot \alpha(v)=u \cdot(\lambda v)=\lambda(u \cdot v)=0,
$$

where we use the facts that α is self-adjoint and v is a eigenvalue of α with eigenvalue λ. Thus, $\alpha(u)$ is orthogonal to v and hence in U.
(e) The proof is by induction on the dimension of V. The first step of the proof is to show the existence of an eigenvector v of α with eigenvalue λ (say). As in part (d), let U be the subspace of all vectors orthogonal to v. From (d) we know that the restriction of α to U is a linear map on U, which is also self-adjoint. By the induction hypothesis, there is a basis of U consisting of orthogonal eigenvectors of α. Augmenting this basis with v yields an orthogonal basis for V.

Parts (a-c) are bookwork; part (d) is (disguised) bookwork, provided it is recognised as a step in the proof of the Spectral Theorem; part (e) tests whether the student understands the proof of the Spectral Theorem "in essence".

End of Paper.

