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Question 1.

(a) (i) No, (ii) yes, (iii) yes, and (iv) no.

(b) A subset U of V is a subspace of V if it is non-empty, closed under vector
addition, and closed under multiplication by arbitrary scalars.

(c) Following (b), suppose that v,v′ ∈U ∩W . Since v,v′ ∈U we know that
v+ v′ ∈U ; similarly, v+ v′ ∈W . Thus v+ v′ ∈U ∩W and U ∩W is closed
under vector addition. Now suppose v ∈U ∩W and c ∈K. Since v ∈U we
know that cv ∈U ; similarly cv ∈W . Thus cv ∈U ∩W and U ∩W is closed
under scalar multiplication. Finally, U ∩W 6= /0 since 0 ∈U ∩W .

(d) The sum of U and W is defined by U +W = {u+w : u ∈U and w ∈W}. The
dimensions of the subspaces are related by

dim(U +W )+dim(U ∩W ) = dim(U)+dim(W ).

(e) The given spanning sets for U and W are clearly independent (one vector is
not a multiple of the other) so they are bases. This dim(U) = dim(W ) = 2.
The vectors 1

0
0

 ,
1

1
0

 and

0
0
1


are clearly independent and hence form a basis for R3; they are contained in
U +W and hence U +W = R3 and dim(U +W ) = 3. By part (d),
dim(U ∩W ) = 2+2−3 = 1.

Notes. (a,b,d) are easy tests of basic concepts/results. (c) is bookwork. (e) is a
routine application.
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Question 2.

(a) The sign of π is sign(π) = (−1)n−c(π), where c(π) is the number of cycles
of π . Then

det(A) = ∑
π

sign(π)a1,π(1) . . .an,π(n).

where the sum is over all permutations of {1, . . . ,n}.

(b) Let A = (ai, j), and A′ be as A, but with the first row replaced by

(a′1,1,a
′
1,2, . . . ,a

′
1,n).

Thus, B has first row

(a1,1 +a′1,1,a1,2 +a′1,2, . . . ,a1,n +a′1,n).

Then

det(B) = ∑
π∈Sn

sign(π)(a1,π(1)+a′1,π(1))a2,π(2) · · ·an,π(n)

= ∑
π∈Sn

sign(π)a1,π(1)a2,π(2) · · ·an,π(n)+ ∑
π∈Sn

sign(π)a′1,π(1)a2,π(2) · · ·an,π(n)

= det(A)+det(A′).

(c) D2 is the property that the determinant of any matrix with a repeated row
is 0. Property D3 is that the determinant of the identity matrix is 1.

(d) By a process of elimination, it is property D2. For example, consider the
matrix A =

(
1 1
1 1

)
. Then det′(A) = 1 (there is just one term in the formula,

corresponding to π being the identity), and yet A has equal rows.

Parts (a) and (c) recall basic definition; (b) is bookwork; (d) is unseen (though an
exercise in the course asked a similar question about the permanent of a matrix).
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Question 3.

(a) Ker(α) = {v ∈V : α(v) = 0} and Im(α) = {α(v) : v ∈V}.

(b) π is a projection on V if it is a linear map on V and π2 = π .

(c) Let v ∈V be arbitrary. Following the hint, write v as u+w where
u = v−π(v) and w = π(v). It is clear that w ∈ Im(π). Also, since
π(v−π(v)) = π(v) = π(π(v)) = π(v)−π(v) = 0, we see that
(v−π(v)) ∈ Ker(π).

(d) Suppose v ∈ Ker(π)∩ Im(π). Since v ∈ Ker(π) we have π(v) = 0. Also,
since v ∈ Im(π), we have π(v) = v. Putting these two facts together,
v = π(v) = 0,

(e) The fact that (I−π) is a projection follows from the chain of inequalities

(I−π)2(v) = (I−π)(v−π(v)) = (I−π)(v)− (π(v)−π(π(v)))
= (I−π)(v)− (π(v)−π(v)) = (I−π)(v).

(f) We have

v ∈ Ker(I−π) ⇐⇒ (I−π)(v) = 0 ⇐⇒ π(v) = v ⇐⇒ v ∈ Im(π),

and

v∈ Im(I−π) ⇐⇒ v=(I−π)(v) ⇐⇒ v= v−π(v) ⇐⇒ π(v)= 0 ⇐⇒ v∈Ker(π)

(or substitute (I−π) for π in the previous identity).

Parts (a) and (b) recall basic definitions; (c) and (d) are bookwork; (e) and (f) did
not appear in this form in the course and require some engagement with the
material.
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Question 4.

(a) The characteristic polynomial of a matrix A is defined to be
pA(x) = det(xI−A). The minimal polynomial of A is the monic polynomial
mA(x) of smallest degree such that mA(A) = 0. Such a polynomial exists by
the Cayley-Hamilton Theorem.

(b) A is diagonalisable if mA(x) is a product of distinct linear factors.

(c)

pA(x) =

∣∣∣∣∣∣
x−3 0 0

2 x−1 1
−1 −1 x−3

∣∣∣∣∣∣= (x−3)
∣∣∣∣x−1 1
−1 x−3

∣∣∣∣= (x−3)(x−2)2.

The minimal polynomial divides pA(x) and has the same set of roots; thus
either mA(x) = (x−3)(x−2) or mA(x) = (x−3)(x−2)2. Observe that

mA(A)= (A−3I)(A−2I)=

 0 0 0
−2 −2 −1
1 1 0

 1 0 0
−2 −1 −1
1 1 1

=

 0 0 0
1 1 1
−1 −1 −1

 6=O,

eliminating the first possibility. So the only remaining possibility is
mA(x) = (x−3)(x−2)2.

(d) A is not diagonalisable, since mA(x) has a repeated factor.

Notes. Parts (a) and (b) are basic definitions, results; (c) and (d) are applications.
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Question 5.

(a) α(v) = λv and v 6= 0. E(λ ,α) = {v ∈V : α(v) = λv}.

(b) V =U +W (or V =U⊕W ) and u ·w = 0 for all vectors u ∈U and w ∈W .

(c) v ·α(w) = α(v) ·w for all v,w ∈V .

(d) The eigenspaces of a self-adjoint linear map form an orthogonal
decomposition of V . That is, V is the direct sum of the eigenspaces, and the
eigenspaces are pairwise orthogonal.

(e) The matrix is symmetric (represents a self-adjoint linear map with respect to
an orthonormal basis) and is hence diagonalisable by the Spectral theorem.

(f) The trace of a matrix A = (ai, j) is the sum ∑i ai,i of its diagonal entries.

(g) A is orthogonally similar to a diagonal matrix whose diagonal entries are the
eigenvalues of A. Similar matrices have equal trace; thus the trace of A is the
sum of its eigenvalues. Since A has trace 18, the missing eigenvalue is
18− (9−27) = 36.

Parts (a–d) and (f) are standard definitions and results; (e) and (g) are simple
applications.

End of Paper.
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