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Question 1. [20 marks]
In this question, V is a vector space over a field K.

(a) Which of the following operations are valid:

(i) adding a vector to a scalar?

(ii) multiplying a vector by a scalar?

(iii) multiplying two scalars?

(iv) multiplying two vectors? [4]

(b) Suppose U is a subset of V . Give easy-to-test conditions for U to be a
subspace of V . [3]

(c) Prove that the intersection of two subspaces U and W of V is also a subspace
of V . [4]

(d) Define the sum U +W of two subspaces of V . State without proof a
relationship between dim(U ∩W ), dim(U), dim(W ) and dim(U +W ). [4]

(e) Let V be R3 and let U and W be the subspaces

U =

〈1
0
0

 ,

1
1
0

〉 and W =

〈0
1
1

 ,

0
0
1

〉 .

Determine dim(U ∩W ), dim(U), dim(W ) and dim(U +W ), briefly justifying
your answer. [5]
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Question 2. [20 marks]
In this question, A, A′ and B are n×n matrices over a field K.

(a) Define the sign of a permutation π on {1, . . . ,n}, and write down the Leibniz
(sum-over-permutations) formula for the determinant of A. [6]

(b) Suppose that A, A′ and B agree on all rows except the first. Furthermore,
suppose that the first row of B is equal to the sum of the first row of A and the
first row of A′. Using the formula from part (a), prove that
det(B) = det(A)+det(A′). [6]

(c) The identity in part (b) of this question is a special case of a property we
labelled D1 in the course. State two other properties, D2 and D3 of the
determinant function that together with D1 characterise the determinant (i.e.,
any function from n×n matrices A to K satisfying D1–D3 is in fact the
determinant of A). [4]

(d) Consider the function det′ from n×n matrices to K defined as follows:
det′(A) is given by the formula of part (a) but with the summation restricted
to even permutations, i.e., permutations π with sign(π) = +1. One of the
properties D1–D3 fails for the modified function det′. Which is it and why? [4]

Question 3. [20 marks]

(a) Suppose V is a vector space and α : V →V is a linear map on V . Define the
kernel Ker(α) and image Im(α) of α . [4]

(b) Define what it means for a linear map π : V →V to be a projection on V . [3]

(c) Let π be a projection on V . By considering the identity
v = (v−π(v))+π(v), prove that V = Ker(π)+ Im(π). [3]

(d) With π as in part (c), prove that Ker(π)∩ Im(π) = {0}. [3]

(e) Consider the linear map I−π on V where I is the identity map and π is a
projection. Prove that I−π is a projection. [3]

(f) Prove that Ker(I−π) = Im(π) and Im(I−π) = Ker(π). [4]
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Question 4. [20 marks]
In this question, A is a square matrix with entries in a field K.

(a) Define the characteristic polynomial pA(x) and the minimal polynomial
mA(x) of A. [6]

(b) State without proof a condition for A to be diagonalisable in terms of the
minimal polynomial of A. [3]

(c) Compute the characteristic polynomial and minimal polynomials of the real
matrix

A =

 3 0 0
−2 1 −1
1 1 3

 . [8]

(d) Is the matrix A from part (c) diagonalisable? Briefly justify your answer. [3]

Question 5. [20 marks]
In this question, α is a linear map on a real inner product space V .

(a) State the condition for a vector v ∈V to be an eigenvector of α with
eigenvalue λ . Define the eigenspace E(λ ,α). [4]

(b) Explain what it means for subspaces U and W of V to form an orthogonal
decomposition of V . [3]

(c) Define what it means for α to be self-adjoint. [2]

(d) State a theorem (a version of the Spectral Theorem) about the eigenspaces of
a self-adjoint linear map. [4]

(e) Consider the matrix

A =

 5 −20 22
−20 17 2
22 2 −4

 .

Is A diagonalisable? (This part requires no calculation, but you should justify
your answer.) [2]

(f) Define the trace of a square matrix. [2]

(g) Suppose A is as in part (e). Given that two of the eigenvalues of A are 9 and
−27, what is the third? (This part requires very little calculation.) [3]

End of Paper.
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