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Question 1. In this question, V is a finite-dimensional vector space over a field K.

(a) Suppose u, v ∈ V are vectors and a, b ∈ K are scalars. Two of the following
six expressions are invalid. Which are they?

ab, au, uv, a+ b, a+ u, u+ v.

No explanation is required. [2]

(b) Explain what it means for a list of vectors in V to be (i) linearly independent,
(ii) spanning, and (iii) a basis. [5]

(c) Suppose that (v1, . . . , vm) is a list of vectors that spans V . Show that if the
list is linearly dependent then it is possible to remove one vector from the list
so that what remains also spans V . [5]

(d) Deduce that every list of vectors that spans V contains a basis of V . [3]

(e) The following list of vectors spans R3:

w1 =

11
0

 , w2 =

10
1

 , w3 =

−1−1
0

 , w4 =

 1
−1
0

 , w5 =

10
0

 .
Illustrate your answer to parts (c) and (d) by identifying a basis of R3 from
within this list. [5]

Question 2. This question concerns n× n matrices over a field K.

(a) In this part only, set n = 3. Write down the elementary matrices
corresponding to the elementary row operations of (i) adding row 3 to row 1,
(ii) interchanging rows 1 and 2, and (iii) multiplying row 2 by the scalar
c ∈ K. [3]

(b) Let A be an n× n matrix. Describe how det(A) changes when (i) one row
of A is added to another, (ii) two rows of A are interchanged, and (iii) one
row of A is multiplied by a scalar c ∈ K. (No justification is required.) [3]

(c) Recall that a non-singular matrix may be reduced to the identity matrix by
applying a sequence of elementary row operations (i.e., multiplying on the
left by elementary matrices). Let A and B be non-singular matrices. Prove
that det(AB) = det(A) det(B). Does this identity also hold when either A
or B is singular? [7]

(d) Define the relation of similarity between matrices. [3]

(e) Prove that similar matrices have the same determinant. [4]
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Question 3. Suppose V and W are vector spaces over a field K.

(a) Explain what it means for α to be a linear map from V to W . [3]

(b) Define the kernel Ker(α) and image Im(α) of the linear map α. [4]

(c) Take a basis (v1, . . . , vk) for Ker(α), and extend it to a basis (v1, . . . , vn)
for V . Prove that the vectors α(vk+1), . . . , α(vn) span Im(α). [6]

(d) State, without proof, a relation between dim(V ), dim(Ker(α)) and
dim(Im(α)). [3]

(e) Suppose α : V → W and β : W → V are linear maps. Prove that
dim(Ker(βα)) ≥ dim(V )− dim(W ). [4]

Question 4.

(a) Define the characteristic polynomial and the minimal polynomial of a linear
map α on a vector space. Briefly explain why these definitions make sense. [6]

(b) A linear map α on R3 is represented with respect to some basis by the matrix

A =

2 0 0
2 5 −2
3 6 −2

 .
Compute the characteristic and minimal polynomials of A. [9]

(c) Is A diagonalisable? Explain your answer. [2]

(d) If the answer to part (c) is “yes”, then write down a diagonal matrix that is
similar to A. If the answer is “no”, write down a matrix in Jordan form that is
similar to A. [3]
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Question 5. In this question, V is an inner product space over R, and α is a linear
map on V .

(a) Let U be a subspace of V . Define the orthogonal complement, U⊥, of U . [3]

(b) Prove that U⊥ is a subspace of V . [3]

(c) State, without proof, the relationship between dim(U), dim(U⊥) and
dim(V ). [2]

(d) Find a basis for the orthogonal complement U⊥ of the subspace U of R4

spanned by [5]

u1 =


1
1
0
0

 and u2 =


0
0
1
1

 .
Show your working.

(e) Explain what it means for α to be self-adjoint. [3]

(f) Suppose v and w are eigenvectors of α with distinct eigenvalues λ and µ.
Assuming α is self-adjoint, show that v · w = 0. [4]

End of Paper.
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