Main Examination period 2023 - January - Semester A

MTH6140 / MTH6140P: Linear Algebra II

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: S. Majid, I. Morris

You may refer to general results from lectures.

Question 1 [20 marks]. In this question, $V=\mathbb{K}[x]_{3}$ denotes the vector space consisting of zero or polynomials of degree ≤ 3, with coefficients in a field \mathbb{K}. Let

$$
U=\{f \in V \mid f(0)=0, f(2)=0\} .
$$

(a) Show that U is a subspace of V.

In the rest of this question, let $u_{1}=x(x-2), \quad u_{2}=x^{2}(x-2)$ as vectors in U.
(b) Are u_{1}, u_{2} linearly independent for $\mathbb{K}=\mathbb{R}$?
(c) Do $u_{1}, u_{2} \operatorname{span} U$ for $\mathbb{K}=\mathbb{R}$?
(d) Repeating for $\mathbb{K}=\mathbb{F}_{2}$, the field of integers mod 2 , are u_{1}, u_{2} linearly independent in this case? Do they span U in this case?

Justify all your answers.

Question 2 [20 marks].

(a) If U, W are subspaces of a vector space V, define the subspace $U+W$ and what is meant by $U \oplus W$.
In the rest of this question, let $V=\mathbb{R}^{3}$ as column vectors and let

$$
\begin{aligned}
U & =\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in V \right\rvert\, x+y+2 z=0,2 x-y-z=0\right\}, \\
W & =\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in V \right\rvert\, 3 x-y+z=0\right\}
\end{aligned}
$$

be subspaces of V.
(b) What are the dimensions of U, W and what is $U \cap W$?
(c) Is it true that $U+W=V$?
(d) Is it true that $V=U \oplus W$?
(e) Is it true that there exists a 3×3 matrix $\Pi \in M_{3}(\mathbb{R})$ such that $\Pi^{2}=\Pi$ and ColumnSpace $(\Pi)=U$?
(Hint: you may wish to consider a linear map $\pi: V \rightarrow V$ with matrix Π relative to the standard basis of V.)

Justify all your answers.

Question 3 [20 marks].

(a) The group S_{2} consists of the identity and the transposition (12). Show that the Leibniz definition of the determinant reduces in the case of a 2×2 matrix to the usual Laplace formula.
(b) Write $\left|\begin{array}{ll}a+b & c \\ d+e & f\end{array}\right|$ as the sum of two determinants of 2×2 matrices, for all $a, b, c, d, e, f \in \mathbb{K}$.
(c) Working over \mathbb{R}, use row and column operations to put the matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0
\end{array}\right]
$$

into canonical form for equivalence.
(d) Let V be a vector space over \mathbb{R} with basis v_{1}, \cdots, v_{4} and W a vector space with basis w_{1}, w_{2}. Let $\alpha: V \rightarrow W$ be the linear map with the matrix A in part (c) with respect to these bases. Find the nullity $\nu(\alpha)$ and determine image (α).

Justify all your answers.

Question 4 [20 marks].

(a) Define the minimal polynomial $m_{A}(x)$ of an $n \times n$ matrix A over a field \mathbb{K}.
(b) Find the characteristic polynomial $p_{A}(x)$ for

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 1 \\
1 & 0 & 2
\end{array}\right],
$$

as a matrix over \mathbb{C}, and hence $m_{A}(x)$ in this case. Show your working.
(c) Using the results of part (b), or otherwise, show that A can be diagonalised over \mathbb{C} and find its eigenvalues.
(d) Show that if the matrix in part (b) is regarded instead over \mathbb{F}_{2} then it cannot be diagonalised.

Question 5 [20 marks].

(a) Given an $n \times n$ real matrix $A=\left(a_{i j}\right)$, define $q_{A}\left(x_{1}, \cdots, x_{n}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$ as a quadratic form on \mathbb{R}^{n}. Why is it sufficient to take A here to be symmetric?
(b) Let $q_{A}(x, y, z)$ on \mathbb{R}^{3} be defined by

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 2 & 0 \\
2 & 0 & -1
\end{array}\right]
$$

with x_{i} denoted as usual by x, y, z. By putting $q_{A}(x, y, z)$ into the canonical form in Sylvester's Law of Inertia, find the associated s, t such that A is congruent to the diagonal matrix with s entries $1, t$ entries -1 and zero elsewhere.
(c) Why can we not use A in part (b) to define an inner product space $\left(\mathbb{R}^{3}, \cdot\right)$ with the standard basis v_{i} of \mathbb{R}^{3} and $v_{i} \cdot v_{j}=a_{i j}$?
(d) Give an example of an inner product space on \mathbb{R}^{3} such that the associated matrix $A=\left(a_{i j}\right)$ with respect to the standard basis is not a diagonal matrix.

Justify all your answers.

