University of London

MTH4104
Introduction to Algebra
For 28 February 2020

## Exercises 5

There is no coursework question due on 28 February.
All the questions on this exercise sheet are there for additional practice. It's important to work through lots of questions-remember that mathematics is not a spectator sport!

1 [Question 4 from the 2019 resit exam.]
(a) Write down the multiplicative inverse law. Pay attention to the quantifiers ("for all", "there exists") and other conditions in the law.
(b) Use the Euclidean algorithm to show that $\operatorname{gcd}(45,59)=1$.
(c) Carrying on from part (b), use the extended Euclidean algorithm to compute the multiplicative inverse of $[45]_{59}$ in $\mathbb{Z}_{59}$.
(d) Find all solutions $x \in \mathbb{Z}_{31}$ to the equation

$$
[16]_{31} x+[26]_{31}=[2]_{31} x+[3]_{31} .
$$

Show your working. You are given that $[14]_{31}^{-1}=[20]_{31}$.

2 Write out addition and multiplication tables for $\mathbb{Z}_{5}$, like the ones for $\mathbb{Z}_{4}$ in the lecture notes.

That is, let $S:=\{0,1,2,3,4\}$ be the canonical set of representatives for $\mathbb{Z}_{5}$. For each pair of elements $a, b \in S$, your tables should give the integers $c, d \in S$ such that

$$
[a]_{5}+[b]_{5}=[c]_{5} \quad \text { and } \quad[a]_{5}[b]_{5}=[d]_{5} .
$$

3 (a) Explain why [59] ${ }_{84}$ has a multiplicative inverse in $\mathbb{Z}_{84}$.
(b) Find a non-negative integer $b<84$ such that $[59]_{84}^{-1}=[b]_{84}$.

4 Find $X, Y \in \mathbb{Z}_{11}$ that satisfy the simultaneous system of linear equations

$$
\begin{aligned}
{[5]_{11} X+[2]_{11} Y } & =[6]_{11} \\
{[4]_{11} X+\quad Y } & =[2]_{11} .
\end{aligned}
$$

5 How many of the elements of $\mathbb{Z}_{20}$ have multiplicative inverses? What about $\mathbb{Z}_{66}$ ?
Is there a way to calculate how many elements of $\mathbb{Z}_{m}$ have multiplicative inverses, without having to list and count them all? Hint: think about the prime factorisation of $m$.

6 This question compares a naïve way to take the "sum" and "product" of two sets of integers to the definitions that we actually use in modular arithmetic.
(a) Prove that, for any integer $m>0$, if $X$ and $Y$ are congruence classes of $\equiv_{m}$, then the set

$$
\{x+y: x \in X, y \in Y\}
$$

is a congruence class of $\mathbb{Z}_{m}$, and in fact equals the sum $X+Y$ within $\mathbb{Z}_{m}$.
(b) Give an example of an integer $m>0$ and two congruence classes $X, Y$ of $\equiv_{m}$ such that the set

$$
\{x y: x \in X, y \in Y\}
$$

is not the product $X Y$ within $\mathbb{Z}_{m}$.
Write down a general statement about how the above set is related to $X Y$.

7 Let $m$ and $n$ be positive integers and $a$ any integer.
(a) Prove that, as sets,

$$
[a]_{m} \cap[a]_{n}=[a]_{\operatorname{lcm}(m, n)} .
$$

(b) I have a secret integer $a$ in mind. I don't tell you what $a$ is, but I do tell you the remainders when $a$ is divided by $m$ and when $a$ is divided by $n$. Explain why the equation in part (a) implies that you can work out what the remainder is ${ }^{1}$ when $a$ is divided by $\operatorname{lcm}(m, n)$.

[^0]
[^0]:    ${ }^{1}$ This principle, the Chinese Remainder Theorem, is used by several old riddles: see for example https://www.cut-the-knot.org/blue/chinese.shtml

