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0 What is algebra?
Until around 1930, “algebra” meant the discipline of mathematics concerned with
solving equations. An equation contains one or more symbols for unknowns, usually
x, y, etc.; we have to find what numbers can be substituted for these symbols to make
the equations valid. This is done by standard methods: rearranging the equation,
applying the same operation to both sides, etc.

The word “algebra” is taken from the title of
al Khwārizmı̄’s algebra textbook H. isāb
al-jabr wa-l-muqābala, circa 820. The word
al-jabr means ‘restoring’, referring to the
process of moving a negative quantity to the
other side of an equation.
Al-Khwarizmi’s name gives us the word
“algorithm”.

Sometimes we have to extend the number system to solve an equation. For ex-
ample, there is no real number x such that x2 + 1 = 0, so to solve this equation we
must introduce complex numbers. Other times we may have equations to solve whose
unknowns are not numbers at all but are objects of a different kind, perhaps vectors,
matrices, functions, or sets.

In this way, attempting to solve equations leads one’s attention to systems of math-
ematical objects and their abstract structure. The modern meaning of the word “alge-
bra” (since van der Waerden’s 1930 textbook Moderne Algebra) is the study of such
abstract structure. In these new systems, we need to know whether the usual rules of
arithmetic which we use to manipulate equations are valid. For example, if we are
dealing with matrices, we cannot assume that AB is the same as BA.

So we will adopt what is known as the axiomatic method. We write down a set of
rules called axioms; then anything we can prove from these axioms will be valid in all
systems which satisfy the axioms. This leads us to the notion of proof, which is very
important in mathematics.

What is mathematics about?
The short answer to this question: mathematics is about proofs. In any other sub-

ject, chemistry, history, sociology, or anything else, what one expert says can always
be challenged by another expert. In mathematics, once a statement is proved, we are
sure of it, and we can use it confidently, either to build the next part of mathematics
on, or in an application of mathematics in another discipline.
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In school teaching, this feature of mathematics does not get brought out; you are
more likely to leave school thinking mathematics is about computation or formulae.
One particularly bad habit instilled in school is the idea that if there are words in a
mathematics question they are just window dressing, to be skipped over as you look
for the numbers you need to start your workings. This is a terrible impulse when
dealing with proofs and questions about proof, which are expressed in written prose
in which every word is there for a mathematical reason. If you recognise this habit in
yourself, you will need to break it!

In Numbers, Sets, and Functions you have seen your first examples of the tech-
niques used for proofs. Most of them will come up in the course of this module. If
you are not confident with words like “definition” or “theorem” or “to prove”, I en-
courage you to refer to Appendix A at the end of these notes for a reminder of what
these mean.

Conventions As you may already know, two different definitions are found for the
set of natural numbers, N. Some mathematicians say that N = {0,1,2,3, . . .}, in-
cluding zero; others say that N = {1,2,3, . . .}, excluding zero1. For clarity, there-
fore, these notes will avoid the symbol N, and distinguish the nonnegative integers
Z≥0 = {0,1,2,3, . . .} from the positive integers Z>0 = {1,2,3, . . .}.

I will write multiplication with ·, rather than ×. The × sign has other functions in
this module, for example Cartesian product of sets, defined in Definition 3.1. Don’t
confuse this raised dot with the decimal point: 2 · 3 is not 2.3. (But there will not be
many decimal numbers here. I prefer fractions.)

1 The integers
To study the integers from the point of view of modern algebra, a starting point is to
understand how the basic arithmetic operations, addition, subtraction, multiplication,
and division, behave in the context of integers. Integer addition, subtraction, and
multiplication behave “normally”, so they will not be our focus for now, though we
will study what this “normal behaviour” is in Section 5.2.

Division is more interesting, because it is not always possible within the integers,
and not just because of division by zero. We can say this another way without using
division signs. If a and b 6= 0 are integers, there may not be an integer solution x to
the equation ax = b (for example, there is no integer solution to 2x = 1).

1See https://qmplus.qmul.ac.uk/mod/resource/view.php?id=871602 for my own feel-
ings.
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So we begin by making a closer study of the properties of division and divisibility
in the integers.

1.1 Division with remainder
The division rule is the following property of the integers:

Proposition 1.1. Let a and b be integers, and assume that b > 0. Then there exist
integers q and r such that

(a) a = bq+ r;

(b) 0≤ r ≤ b−1.

Moreover, q and r are unique.

The numbers q and r are called the quotient and remainder when a is divided by b.
The last part of the proposition (about uniqueness) means that, if q′ and r′ are another
pair of integers satisfying a = bq′+ r′ and 0≤ r′ ≤ b−1, then q = q′ and r = r′.

Proof. We will show the uniqueness first. Let q′ and r′ be as above. If r = r′, then
bq = bq′, so q = q′ (as b > 0). So suppose that r 6= r′. We may suppose that r < r′ (the
case when r > r′ is handled similarly). Then r′− r = b(q−q′). This number is both a
multiple of b, and also in the range from 1 to b−1 (since both r and r′ are in the range
from 0 to b−1 and they are unequal). This is not possible.

It remains to show that q and r exist. Let us first take the case that a≥ 0. Consider
the multiples of b: 0, b, 2b, . . . . Eventually these become greater than a. (Certainly
(a+1)b is greater than a.) Let qb be the last multiple of b which is not greater than a.
Then qb≤ a < (q+1)b. So 0≤ a−qb < b. Putting r = a−qb gives the result.

If a < 0, then instead we can let qb be the least multiple of −b which is less than
or equal to a, and let r = a−qb. (I leave it to you to check the details.)

Since q and r are uniquely determined by a and b, we write them as a div b and
a mod b respectively. So, for example, 37 div 5 = 7 and 37 mod 5 = 2.

The division rule is sometimes called the division algorithm. Most people under-
stand the word “algorithm” to mean something like “computer program”, but it really
means a set of instructions which can be followed without any special knowledge or
creativity and are guaranteed to lead to the result. A recipe is an algorithm for pro-
ducing a meal. If I follow the recipe, I am sure to produce the meal. (But if I change
things, for example by putting in too much chili powder, there is no guarantee about
the result!) If I follow the recipe, and invite you to come and share the meal, I have to
give you directions, which are an algorithm for getting from your house to mine.
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The algorithm for long division by hand, which used to be
taught in primary school (though this is out of fashion now),
has been known and used for more than 3000 years. This
algorithm is a set of instructions which, given two positive
integers a and b, divides a by b and finds the quotient q and
remainder r satisfying a = bq+ r and 0≤ r ≤ b−1.
The example at right illustrates that if a = 12345 and b = 6,
then q = 2057 and r = 3.

2057
6
)

12345
12000

345
300
45
42
3

1.2 Greatest common divisor and least common multiple
Definition 1.2. Let a and b be integers. Then a divides b if and only if there exists an
integer c such that b = ac. The notation for “a divides b” is a | b.

For example, 3 | 6, but 6 - 3. The phrasing “a divides b” has several synonyms. We
may also call a a divisor or factor of b, or call b a multiple of a.

Warning: You cannot substitute just any use of the word “divide” by |. The sym-
bol | is a relation symbol, like = or < (see Section 3.2 for more about relations and
their symbols). This means that a | b is a true-or-false statement, not a number. It is
nonsense to write, for example2, “3 | 7 has remainder 1”. Another difference between
| and / is which side of the symbol the divisor goes on: a | b is true when b/a is an
integer (as long as a 6= 0).

• Every integer, including zero, divides 0. This might seem odd, since we know
that “you can’t divide by zero”; but 0 | 0 means simply that there exists a number
c such that 0 = 0 · c, which is certainly true. On the other hand, zero doesn’t
divide any integer except zero.

• If a and b are nonnegative integers such that a | b and b | a, then a = b. (In
the language of relations, we say that | is an antisymmetric relation on the non-
negative integers.) The same is not true if a and b could be any integers —
why?

Definition 1.3. Let a and b be nonnegative integers. A common divisor of a and b is
a nonnegative integer d with the property that d | a and d | b. We call d the greatest
common divisor if it is a common divisor, and if any other common divisor of a and b
is smaller than d.

2If you write “3 | 6 = 2”, this is legal mathematical syntax, but it means “3 | 6 and 6 = 2”. This is
the same rule that lets you abbreviate e.g. “0≤ x and x < 1” to “0≤ x < 1”.
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Thus, the common divisors of 12 and 18 are 1, 2, 3 and 6; and the greatest of these
is 6. We write gcd(12,18) = 6.

The remarks above about zero show that gcd(a,0) = a holds for any non-zero
number a. What about gcd(0,0)? Since every nonnegative integer divides zero, there
is no greatest one. Later we will provide a corrected definition of gcd which addresses
this flaw. See Proposition 1.9 and the discussion following.

Definition 1.4. The positive integer m is a common multiple of a and b if both a | m
and b | m. It is the least common multiple if it is a common multiple which is smaller
than any other common multiple.

Thus the least common multiple of 12 and 18 is 36, written lcm(12,18) = 36. Any
two nonnegative integers a and b have a least common multiple. For there certainly ex-
ist common multiples, for example ab; and any non-empty set of nonnegative integers
has a least element. (The least common multiple of 0 and a is 0, for any a.)

Is it true that any two nonnegative integers have a greatest common divisor? We
will see that it is. Consider, for example, 8633 and 9167. Finding the gcd looks like a
difficult job. But, if you know that 8633 = 89 ·97 and 9167 = 89 ·103, and that all the
factors are prime, you can easily see that gcd(8633,9167) = 89.

Here is how this procedure works in general. We first recall a theorem on prime
factorisation.

Theorem 1.5 (Fundamental Theorem of Arithmetic). Every positive integer n can be
written as a product

n = pe1
1 · · · p

ek
k

where p1, . . . , pk are different prime numbers and e1, . . . ,ek are positive integers. This
expression is unique up to reordering of the factors.

• “Up to X”, in mathematical prose, means that we are counting two things (in
this case factorisations) to be the same if their only difference is X (in this case
reordering). This makes sure we don’t count 89× 97 and 97× 89 as different
factorisations.

• What is the factorisation of the number 1? It’s the empty product, where k = 0
and there are no factors. The product of no numbers is 1.

We can insert extra primes into the factorisation provided by the Fundamental Theo-
rem of Arithmetic, as long as we give them the exponent 0. This is helpful when we
want to compare multiple factorisations:
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8633 = 891· 971· 1030 and
9167 = 891· 970· 1031 have gcd

89 = 891· 970· 1030.

The following theorem supposes that we have done this, so that the same list of primes
appears for two given integers.

Proposition 1.6. Let a and b be positive integers, with factorisations a = pe1
1 · · · p

ek
k

and b = p f1
1 · · · p

fk
k .

(i) a | b if and only if ei ≤ fi for every i = 1, . . . ,k.

(ii)
gcd(a,b) = pmin(e1, f1)

1 · · · pmin(ek, fk)
k .

Proof. To (i). Suppose a | b, so that there is an integer c such that b = ac. Be-
cause a and b are positive, c must also be. Therefore c has a prime factorisation,
say c = pg1

1 · · · p
gk
k . (Again, we may throw these primes into the earlier lists with their

exponents set to 0, so that we can use the same list of primes every time.) It follows
by laws of exponents that

p f1
1 · · · p

fk
k = b = ac = pe1+g1

1 · · · pek+gk
k .

Because of the uniqueness part of the Fundamental Theorem of Arithmetic, the left
and right hand sides of this equation must be the same factorisation, implying that
fi = ei +gi for every i = 1, . . . ,k. Therefore ei ≤ ei +gi = fi for every such i.

Conversely, suppose that ei ≤ fi for every i. Since a is not zero, b/a is a rational
number, and we can test whether a divides b by testing whether it is an integer. By the
laws of exponents,

b
a
=

p f1
1 · · · p

fk
k

pe1
1 · · · p

ek
k

=
p f1

1
pe1

1
· · ·

p fk
k

pek
k

= p f1−e1
1 · · · p fk−ek

k .

If ei ≤ fi for each i, then all of the exponents on the right hand side are greater than
or equal to 0, which means the right hand side is an integer, since it is a product of
integers (primes, with possible repetitions).

To (ii). By part (i), an integer d is a divisor of a if and only if its factorisation is
d = pg1

1 · · · p
gk
k , where gi ≤ ei for each i (and primes that don’t divide a don’t appear

in d either). Since the same is true with b and fi in place of a and ei, we see that
d is a common divisor of a and b if and only if gi ≤ ei and gi ≤ fi for each i. This
gives two different upper bounds on gi. Whichever one is greater is redundant, so it is
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equivalent to keep only the lesser of the two, and require that gi ≤min(ei, fi). Finally,
to find the greatest of the common divisors d we can maximise all of these exponents
independently. Therefore the gcd is d = pg1

1 · · · p
gk
k , where each gi = min(ei, fi) attains

its upper bound.

The downside of the method of Proposition 1.6 for finding the gcd of two numbers
is that it is not efficient. Factorising a number into its prime factors is notoriously
difficult. In fact, it is the difficulty of this problem which keeps internet commercial
transactions secure!

Euclid discovered an efficient way to find the gcd of two numbers a long time ago.
His method gives us much more information about the gcd as well. In the next section,
we look at his method.

1.3 Euclid’s algorithm
Euclid’s algorithm is based on two simple rules:

Proposition 1.7.

gcd(a,b) =

{
a if b = 0,
gcd(b,a mod b) if b > 0.

Proof. We saw already that gcd(a,0) = a, so suppose that b > 0. Let r = a mod b =
a− bq, so that a = bq+ r. If d divides a and b then it divides a− bq = r; and if d
divides b and r then it divides bq+ r = a. So the lists of common divisors of a and b,
and common divisors of b and r, are the same, and the greatest elements of these lists
are also the same.

This really seems too slick to give us much information; but, if we look closely,
it gives us an algorithm for calculating the gcd of a and b. If b = 0, the answer is
a. If b > 0, calculate a mod b = b1; our task is reduced to finding gcd(b,b1), and
b1 < b. Now repeat the procedure; of b1 = 0, the answer is b; otherwise calculate
b2 = b mod b1, and our task is reduced to finding gcd(b1,b2), and b2 < b1. At each
step, the second number of the pair whose gcd we have to find gets smaller; so the
process cannot continue for ever, and must stop at some point. It stops when we are
finding gcd(bn−1,bn), with bn = 0; the answer is bn−1.

This is Euclid’s Algorithm. Here it is more formally:

To find gcd(a,b)

Put b0 = a and b1 = b.
As long as the last number bn found is non-zero, put bn+1 = bn−1 mod bn.
When the last number bn is zero, then the gcd is bn−1.
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Example Find gcd(198,78).

b0 = 198, b1 = 78.

198 = 2 ·78+42, so b2 = 42.

78 = 1 ·42+36, so b3 = 36.

42 = 1 ·36+6, so b4 = 6.

36 = 6 ·6+0, so b5 = 0.

So gcd(198,78) = 6.

Exercise Use Euclid’s algorithm to find gcd(8633,9167).

1.4 Euclid’s algorithm extended
The calculations that allow us to find the greatest common divisor of two numbers also
do more.

Theorem 1.8. Let a and b be nonnegative integers, and d = gcd(a,b). Then there are
integers x and y such that d = xa+ yb. Moreover, x and y can be found from Euclid’s
algorithm.

Proof. The first, easy, case is when b = 0. Then gcd(a,0) = a = 1 ·a+0 ·0, so we can
take x = 1 and y = 0.

Now suppose that r = a mod b, so that a = bq + r. We saw that gcd(a,b) =
gcd(b,r) = d, say. Suppose that we can write d = ub+ vr. Then we have

d = ub+ v(a−qb) = va+(u−qv)b,

so d = xa+ yb with x = v, y = u−qv.
Now, having run Euclid’s algorithm, we can work back from the bottom to the top

expressing d as a combination of bi and bi+1 for all i, finally reaching i = 0.

To make this clear, look back at the example. We have

42 = 1 ·36+6, 6 = 1 ·42−1 ·36
78 = 1 ·42+36, 6 = 1 ·42−1 · (78−42) = 2 ·42−1 ·78

198 = 2 ·78+42, 6 = 2 · (198−2 ·78)−1 ·78 = 2 ·198−5 ·78.

The final expression is 6 = 2 ·198−5 ·78.
Euclid’s algorithm proves that the greatest common divisor of two integers a and

b is an integer d which can be written in the form xa+ yb for some integers x and y;
and it proves this by giving us a recipe for finding d,x,y from the given values a and
b. This is a constructive proof, in the sense discussed after Theorem 2.11.
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We defined the greatest common divisor of a and b to be the largest nonnegative
integer which divides both. Using the result of the extended Euclid’s algorithm, we
can say a bit more:

Proposition 1.9. The greatest common divisor of the nonnegative integers a and b is
the nonnegative integer d ≥ 0 with the properties

(a) d | a and d | b;

(b) if e is a nonnegative integer satisfying e | a and e | b, then e | d.

One of the assertions this proposition makes is that there is only one nonnegative
integer d that has properties (a) and (b). This might escape you the first time you read
the proposition, because it’s conveyed in a subtle fashion: by the choice of the word
“the”, rather than “a”, when we said “the integer d”!

Proof. Let d = gcd(a,b). Certainly condition (a) holds. Now suppose that e is a
nonnegative integer satisfying e | a and e | b. Euclid’s algorithm gives us integers x
and y such that d = xa+ yb. Now e | xa and e | yb; so e | xa+ yb = d.

Remark. With our earlier definition, we had to admit that gcd(0,0) doesn’t exist,
since every nonnegative integer divides 0 and there is no greatest one. But, with
a = b = 0, there is a unique nonnegative integer satisfying the conclusion of Proposi-
tion 1.9, namely d = 0. So in fact this Proposition gives us a better way to define the
greatest common divisor, which works for all pairs of nonnegative integers without
exception!

The definition could be written word-for-word identically with the proposition, as
follows.

Definition 1.10. The greatest common divisor of the nonnegative integers a and b is
the integer d ≥ 0 with the properties

(a) d | a and d | b;

(b) if e is a nonnegative integer satisfying e | a and e | b, then e | d.

But this definition cannot stand alone, since it is obvious neither that the number
d it specifies exists, nor that it is unique, which is also implicitly being claimed when
we say “the integer d”. We still need Proposition 1.9 to establish that the definition
works.
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2 Polynomials and their roots

2.1 Polynomials
The equations at the historical heart of algebra are polynomial equations. We are
familiar with polynomials as functions of a particular kind, e.g. f1(x) = x2 + 1 or
f2(x) = 5x3−x+1 or f3(x) =

√
2x4−πx3−

√
3. Let us start our study of polynomials

by defining them carefully.
The polynomials f1, f2, and f3 are real, because the powers of x appear multiplied

by real numbers. But we will be referring to complex numbers as well in this section.
We have seen at the close of Numbers, Sets and Functions that polynomials with
complex coefficients are worthy of study. If you need a quick refresher on complex
numbers, see Definition 5.3. If that isn’t enough for you, please refer back to your
Numbers, Sets and Functions notes and revise those.

The following definition is made to allow us to talk about either the real or the
complex setting.

Definition 2.1. Let S be either the set R of real numbers or the set C of complex
numbers. Let x be a variable.

A polynomial in x with coefficients in S is an expression

f = anxn +an−1xn−1 + · · ·+a1x+a0

where a0,a1, . . . ,an−1,an are elements of S. They are the coefficients of f .
The set of all such polynomials will be denoted by S[x], that is, R[x] or C[x].

Here are some first remarks on this definition.

• When we do algebra in R[x] or C[x], we are working with expressions like “x2+
1” in their own right. We do not, by default, have in mind solving for x, or
substituting in numbers for x. For example, in R[x], the answer to the question

Does x2 +1 equal 4x−2?

is just “no”, not “x = 1 or x = 3”. This is why I called the polynomial in my
definition f , rather than f (x).

• We may use a different symbol for the variable in place of x. For example,
t4 +6t3 +11t2 +6t is an element of R[t].

• Some coefficients may be zero. For example, x2+1 would be written out in full
as 1x2 + 0x+1. This is a very different polynomial from x3 + 1 = 1x3 + 0x2 +
0x+1.
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• A polynomial is determined by its coefficients. Compare this assertion to sen-
tences like “a set is determined by its elements” or “a function is determined by
its values”: we mean that if you know all the coefficients of some polynomial,
then you know everything about it.

What about the converse? Do two different sequences of coefficients give two
different polynomials? Yes, but there is one fly in the ointment. We don’t want
to say that a polynomial is changed by inclusion of extra zero terms, of the form
0xn. Therefore, we declare that two polynomials

f = amxm +am−1xm−1 + · · ·+a1x+a0 and

g = bnxn +bn−1xn−1 + · · ·+b1x+b0

are equal if and only if their sequences of coefficients are equal aside from
leading zeroes. We can write this out formally by saying that there exists an
integer p, with p ≤ n and p ≤ m, so that and ai = bi for all i = 0, . . . , p, while
ai = 0 for all i = p+1, . . . ,m, and bi = 0 for all i = p+1, . . . ,n. For example,
2x−4 and 0x3 +0x2 +2x−4 are the same element of R[x].

Definition 2.2. The degree of a nonzero polynomial is the largest integer n for which
its coefficient of xn is non-zero.

That is, x2 + 1 has degree 2, even though we could write it as 0x27 + x2 + 1. The
zero polynomial doesn’t have any non-zero coefficients, so its degree is not defined.
The notation for the degree of f is deg f .

We have special words for polynomials of low degree3:

degree 0 1 2 3 4 5 6 . . .
word constant linear quadratic cubic quartic quintic sextic . . .

By rights these words are adjectives, but except for “linear” they may also be used as
nouns.

2.2 Roots of polynomials
Given an equation f (x) = g(x) of two polynomials to be solved for x, collecting all
the terms on one side lets us convert this to the equivalent equation f (x)−g(x) = 0, in
which the left hand side is also a polynomial, f −g. So to solve polynomial equations
it is enough to be able to find the roots or zeroes of a single polynomial, i.e. those
values of its argument at which it evaluates to zero.

3Out in the mathematical world, the application of these words is not as cut and dried as I suggest.
Every mathematician would call 0 a constant, but it is not a degree zero polynomial. Or, in some
contexts, a “linear” function must have no constant term.
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Remark. Being able to focus on roots is an example of the power of extending your
number system: it is only possible due to the invention of negative numbers! Before
negative numbers were accepted as legitimate – a slow process, not finished till the
time of Leibniz in the 17th century – algebraists had to solve each of the three kinds
of quadratic equation

ax2 = bx+ c; bx = ax2 + c; c = ax2 +bx

differently, since none of them could be converted to another.

Some polynomial equations can’t be solved in R. These include x2 = −1, which
has no real solution, and x3 = 2, which has only one, though because of its degree
we would like it to have three. Attempts to solve such equations4 were what led
mathematicians to invent larger number systems than R.

The definition of the complex numbers expresses the insight that the first equation
is the crucial one. That is, we invent a new number i, and declare that i2 = −1. We
let C = {a+ bi : a,b ∈ R}, which is the smallest reasonable candidate for a number
system that contains R as well as i, since we’d like to be able to add and multiply i
with existing numbers. Then, wonderfully, every polynomial equation with real coef-
ficients, or even with complex coefficients, can be solved inside C! More precisely:

Theorem 2.3 (Fundamental Theorem of Algebra). Let n≥ 1, and let a0,a1, · · · ,an−1,an
be complex numbers, where an 6= 0. The polynomial equation

anzn +an−1zn−1 + · · ·+a1z+a0 = 0

has at least one solution inside C.

Despite the name, the proof of this theorem is beyond the scope of this module,
because it relies on analytic properties of R or C, that is, properties involving continu-
ity and limits like the Intermediate Value Theorem. You will see a proof in the module
Complex Variables.

I reassure you that, in this module, I will use real polynomials rather than com-
plex ones for examples and exam questions wherever I can. The algebraic theory of
complex polynomials is genuinely simpler, though, so it would be perverse to state the
theorems for R[x] alone.

4There is a cubic equation for cubic polynomials, like the familiar quadratic equation, but even when
using it on a real cubic with three real roots, complex numbers will sometimes turn up in intermediate
steps. Phenomena like this are what really forced mathematicians of the sixteenth through eighteenth
centuries to accept complex numbers.
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2.3 How to find the roots
You already know how to solve real polynomials of low degree. Let’s review these
solutions, and see whether they still work when the polynomials might be complex.

Given two complex numbers α,β , we can consider the linear equation

αz+β = 0,

to be solved for z. Provided α is non-zero, this equation has a unique solution, namely

z =−β

α
.

To see that this is true, we can solve the equation in the usual way, but taking care on
the way to note what operations we are performing, and to make sure that our number
system allows these operations, so that we’re not doing anything illegal. Very briefly:

αz+β = 0 ⇒
(αz+β )+(−β ) = −β ⇒

αz = −β ⇒
α−1(αz) = α−1(−β ) ⇒

z = α−1(−β ) =−β

α
.

For this argument to work, we need to be able to add the negative of β to both sides
of the equation, and then we need to be able to divide the resulting equation by α , or
put another way, multiply both sides by the multiplicative inverse α−1 = 1

α
of α .

In C we can do both of these operations. Therefore, all linear equations with α

nonzero have a solution in C.
Foreshadowing. If you have already read Section 5 and know the definition of a
“field”: you can solve the linear equation αz+β = 0 over any field, using exactly the
same procedure as above. It is a worthwhile exercise for your revision to see which
field laws we are using. For instance, can you spot the invocations of the associative
laws?

What about quadratic equations? Let’s consider the general quadratic equation

αz2 +β z+ γ = 0

with complex coefficients α,β ,γ ∈ C. Can we solve this equation inside the complex
numbers?
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The usual solution to the quadratic equation starts by completing the square, as
follows:

αz2 +β z+ γ = 0 ⇒
z2 +

(
β

α

)
z+
(

γ

α

)
= 0 ⇒

z2 +
(

β

α

)
z+ β 2

4α2 +
(

γ

α

)
= β 2

4α2 ⇒(
z+ β

2α

)2
= β 2

4α2 − γ

α
= β 2−4αγ

4α2 .

So far we have not done anything other than divide through by α (which is legal
provided that α 6= 0 — but if α = 0 then we didn’t truly have a quadratic), and add
some constants to both sides of the equation. Since the usual laws of arithmetic hold
for complex numbers, we can be confident that everything so far is correct in C.

Now would come the extraction of the square roots of β 2 − 4αγ , if we were
working over the real numbers. (The

√
4α2 = 2α in the denominator poses no prob-

lem.) Let us suppose for the moment that we knew how to find square roots. Using√
β 2−4αγ to mean any complex number u satisfying the equation u2 = β 2− 4αγ ,

we can complete the solution as follows:(
z+ β

2α

)2
= β 2−4αγ

4α2 ⇒

z+ β

2α
= ±

√
β 2−4αγ

4α2 ⇒

z =
−β±
√

β 2−4αγ

2α
.

The rest of these derivations work in C as well, so we see that we have reduced solving
quadratic equations over C to the problem of extracting square roots inside C.

Can we extract these square roots? This does not follow from the fact that C
follows the usual laws of arithmetic: after all, R also does, but negative numbers have
no square roots in R. It does follow from the Fundamental Theorem of Algebra that
the square roots exist, but that still doesn’t help us find them. It turns out that there is
a way to compute square roots of complex numbers, and indeed roots of any order. I
have described the procedure in a set of supplementary notes, but will go no further
with it here.

And what about polynomial equations of degree greater than two? For cubic equa-
tions, 16th century Italian algebraists Niccòlo Tartaglia, Scipione del Ferro and others
discovered procedures for obtaining solutions similar to what we have just done for
the quadratic, involving extraction of a cube root. Their procedure is sketched in an-
other supplement to these notes. For quartic equations there is a procedure as well,
usually credited to Lodovico Ferrari around the same time. But the quartic is the end
of the line!
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Theorem 2.4 (Abel-Ruffini Theorem). Let n ≥ 5 be an integer. There is no expres-
sion built from the complex coefficients a0,a1, . . . ,an using complex scalars, addition,
subtraction, multiplication, division, and extraction of roots which evaluates, for all
a0,a1, . . . ,an ∈ C, to a complex solution to the equation

anxn + · · ·+a1x+a0 = 0.

Of course, the Fundamental Theorem of Algebra guarantees that complex solu-
tions exist to the polynomial in the Abel-Ruffini theorem. It is in writing these solu-
tions down that the problem lies.

This theorem is another which we will not prove in this module. A proof will be
presented in a course on Galois theory (at Queen Mary, the module title is “Further
Topics in Algebra”).

2.4 Roots and factors
The following proposition encapsulates the workings of the polynomial long division
algorithm which you may be familiar with. We will discuss polynomial division in
Section 2.6, together with a more general form of the proposition (Theorem 2.12).

Proposition 2.5. Let R be either R or C. Let f ∈ R[x] and α ∈ R. Then there exist
q ∈ R[x] and r ∈ R such that

f = (x−α) ·q+ r. (1)

Proof. We prove this by induction on deg f . The proof will be a strong induction: the
n+1 case may not draw on the n case, but possibly on an earlier case, n−1 or n−2
or so on. To take care of this, we set up the inductive hypothesis to encompass not
just polynomials of degree n, but polynomials of degree at most n. We also have to be
mindful when writing the proof that the zero polynomial has undefined degree.
Base case. If deg f is zero or undefined then f is a constant (possibly zero), so we can
write

f = (x−α) ·0+ f .

Inductive hypothesis. Let n be a non-negative integer, and suppose that we know that
any polynomial of degree at most n has an expression of the form (1).
Inductive step. Let f be a polynomial of degree at most n+ 1; we must show that
f has an expression of the form (1). If f has degree less than n+1, we have already
proven the claim for f . So we may assume that f has degree exactly n+1. That is,

f = an+1xn+1 +anxn + · · ·+a1x+a0
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where an+1 ∈ R is not zero (but the remaining coefficients an, . . . ,a0 may or may not
be zero).

To apply the inductive hypothesis, we would like to pare f down to a polynomial
of smaller degree. The first thing that might come to mind, perhaps, is to split f up as

f = an+1xn+1 +
(
anxn + · · ·+a1x+a0

)
.

The parenthesised summand is a polynomial of degree less than n+ 1, so the induc-
tive hypothesis could be applied to it. But that would leave us no way to handle the
an+1xn+1. So instead we will split f up differently:

f = an+1xn(x−α)+
(
(an−αan+1)xn +an−1xn−1 · · ·+a1x+a0

)
.

Let f ′ = (an−αan+1)xn +an−1xn−1 · · ·+a1x+a0. By the inductive hypothesis, there
exist q′ ∈ R[x] and r′ ∈ R such that

f ′ = (x−α) ·q′+ r′.

It follows that

f = an+1xn(x−α)+ f ′

= (x−α) ·an+1xn +(x−α) ·q′+ r′

= (x−α) ·
(
an+1xn +q′

)
+ r′.

Since an+1xn +q′ ∈ R[x] and r′ ∈ R, this completes the inductive step, and the propo-
sition is proved.

You are probably familiar with a corollary of this proposition, as the justification
for having studied polynomial factorisation.

Corollary 2.6. Let f ∈ R[x] and α ∈ R. The remainder obtained when dividing f by
x−α is f (α).

In particular, x = α is a solution of f (x) = 0 if and only if the polynomial x−α is
a factor of f .

Proof. By Proposition 2.5, there exist a polynomial q ∈ R[x] and a number r ∈ R such
that

f = (x−α) ·q+ r.

Substituting in x = α , we get

f (α) = (α−α) ·q(α)+ r = r.

Therefore if f (α) = 0, we have f (x) = (x−α) · q(x), i.e. x−α is a factor of f (x).
Conversely, if x−α is a factor of f , say f = (x−α) ·g, then substitution gives

f (α) = (α−α) ·g(α) = 0 ·g(α) = 0.
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Using polynomial factorisation, we can “stretch” the Fundamental Theorem of
Algebra to tell us more. A typical complex polynomial equation of degree n has not
just the one solution promised by the Theorem, but n of them. In fact, we can make
every complex polynomial equation have its full complement of solutions by a sneaky
bit of counting: we have to count some of the solutions multiple times.

Definition 2.7. Let k be a nonnegative integer. An element α ∈ R is a solution of
multiplicity k to the equation f (x) = 0 if (x−α)k is a factor of f (x), but (x−α)k+1 is
not.

For example, the solutions of (x− 1)3(x− 2)4 = 0 are 1 and 2, of which 1 has
multiplicity 3 and 2 has multiplicity 4.

Note that the multiplicity is a function of a polynomial f and a number α . If we
wanted to make a notation for multiplicity, a suitable one would be m( f ,α), not just
m(α) or m( f ) alone.

Theorem 2.8 (Fundamental Theorem of Algebra with multiplicities). Let n ≥ 1, and
let a0,a1, · · · ,an−1,an be complex numbers, where an 6= 0. The polynomial equation

anzn +an−1zn−1 + · · ·+a1z+a0 = 0

has exactly n solutions in C, counted with multiplicity.

When we say there are “n solutions, counted with multiplicity”, we mean that the
sum of the multiplicities of the solutions is n.

Proof. First of all, to simplify the argument, we will divide through by the leading
coefficient an, which is not zero. The resulting equation,

zn +
an−1

an
zn−1 + · · ·+ a1

an
z+

a0

an
= 0.

has the same solutions as the original, so we will analyse it instead. Let f = zn+ · · ·+
(a1/an)z+a0/an.

What we will show is that f factors completely as a product of n linear factors
z−αi, possibly with repeats. This implies the statement of the theorem, because the
sum of all the multiplicities is the total number of factors.

For the factorisation claim, we use induction. This induction argument displays a
common feature: the case which “deserves” to be the base case, n = 0, would require
us to work with the product of zero polynomials. That is actually unproblematic –
the product of zero factors equals one – but it bothers many people encountering it
for the first time, and so I will write the proof with n = 1 as the base case to avoid
consternation.
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Base case. If n = 1, then f = z+b is already of the form z−α1, taking α1 =−b.
Inductive hypothesis. Assume that every monic polynomial of degree k factors as a
product of k linear factors.
Inductive step. Let f be a monic polynomial of degree k+ 1. By the Fundamental
Theorem of Algebra, f (z) = 0 has a complex solution z = αk+1. By Corollary 2.6,
z−αk+1 is a factor of f (z). Write f (z) = (z−αk+1) ·q(z). Then q has degree k, so the
inductive hypothesis applies, and q has a factorisation

q(z) = (z−α1) · · ·(z−αk)

into n linear factors. We conclude that

f (z) = q(z)(z−αk+1) = (z−α1) · · ·(z−αk)(z−αk+1)

is a product of k+ 1 linear factors, as desired. This completes the induction, and the
theorem is proved.

2.5 Polynomial equations over R
If z = a+bi is a complex number (where a and b are real), then the complex number
a− bi is called the complex conjugate of z, and is written as z. The following facts
about complex conjugation are easy to check from the definitions, for any two complex
numbers z and w:

• z+w = z+w;

• zw = z ·w;

• z = z;

• z = z if and only if z is a real number.

Lemma 2.9. Let f ∈ R[x] be a real polynomial and z a complex number. If f (z) = 0,
then also f (z) = 0.

Proof. Let f = anxn+ · · ·+a0, where the ai are real numbers. Conjugating both sides
of the equation f (z) = 0 shows that

f (z) = anzn + · · ·+a1z+a0

= anzn + · · ·+a1z+a0

= an · zn + · · ·+a1 · z+a0

= an · zn + · · ·+a1 · z+a0

= f (z)

is equal to 0 = 0.
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The next proposition is one equivalent to the Fundamental Theorem of Algebra
(with multiplicities) for real polynomials.

Proposition 2.10. Every real polynomial is a product of a real scalar and factors of
the following two types:

(a) linear factors x−α , where α is a real number;

(b) quadratic factors x2 + cx+d, where c and d are real numbers with c2 < 4d.

Proof. As in the proof of Theorem 2.8, once we show that every nonconstant real
polynomial has at least one factor of type (a) or (b), we can produce a proof of the
whole proposition using induction. I will prove that one factor exists, and leave the
induction part as an exercise for you.

The Fundamental Theorem of Algebra shows that f (x) = 0 has a complex solution
x = α , so that x−α is a factor of f . If α is a real number, then x−α is a linear factor
of type (a).

If α is a complex number that is not real, then our last lemma shows that x = α is
a different solution to f (x) = 0, and therefore a solution to f/(x−α) = 0. Therefore
(x−α) divides f/(x−α), so that (x−α)(x−α) divides f . Now write α = a+ bi
where a and b are real, and b 6= 0 because α is not real. We have

(x−α)(x−α) = (x−a−bi)(x−a+bi)

= x2 +(−2a)x+(a2 +b2).

This is a factor of f of our type (b), because if c =−2a and d = a2 +b2, then

c2 = 4a2 < 4a2 +4b2 = 4d.

Theorem 2.11. Let f (x) be a real polynomial of odd degree. Then there is a real
number α such that f (α) = 0.

We will prove this in two ways. The first is as a corollary of Proposition 2.10.

Proof. Factor f as in Proposition 2.10. We cannot write f as a product of quadratic
factors only (times a scalar), because the degree of any such product is even. So f
must have a linear factor x−α for some real number α , and this α is the solution
sought.

This theorem also permits a proof using your knowledge of Calculus that avoids
the, so far unproved, Fundamental Theorem of Algebra.
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Outline of proof. Let f (x) = anxn +an−1xn−1 + · · ·+a0, where n is odd. We can sup-
pose that an is positive, since otherwise we can solve the equation − f (x) = 0 instead.
Now, using calculus, we can show that f (x)> 0 for large positive values of x, because
the term anxn is positive and much larger than the sum of the other terms. In the same
way, f (x) < 0 for large negative values of x. By the Intermediate Value Theorem,
there is a value α with f (α) = 0.

If you don’t know or remember the Intermediate Value Theorem, the last sentence
just says that the graph of y = f (x) is above the x-axis for large positive x, and below
it for large negative x, so it must cross the axis somewhere.

The above argument gives us no clue as to where to look for the number α . That
means it is what is called a non-constructive proof.

Suppose we are trying to prove that an object having certain specified properties,
such as a solution to some equation, exists. There are basically two ways we can go
about it:

• We can give a “non-constructive proof”. For example, we can suppose that the
object doesn’t exist, and deduce a contradiction. This is a valid argument, but it
gives us absolutely no information about how to go about finding the object.

• We can give a constructive proof, which amounts to an algorithm or method for
finding the object in question.

2.6 Polynomial division
There is a version of the division rule and Euclid’s algorithm for polynomials. The
method for long division for polynomials is similar to that for integers. Here is an
example: Divide x4 +4x3− x−5 by x2 +2x−1.

x2 +2x −3
x2 +2x −1

)
x4 +4x3 − x −5
x4 +2x3 − x2

2x3 + x2 − x
2x3 +4x2 −2x

−3x2 + x −5
−3x2 −6x +3

7x −8

This calculation shows that when we divide x4+4x3−x+5 by x2+2x−1, the quotient
is x2 +2x−3 and the remainder is 7x−8.
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Here is a general statement of the division rule for polynomials. Remember that we
have defined the degree of a polynomial (Definition 2.2). Our earlier Proposition 2.5
was the special case of the next theorem where degg = 1.

Theorem 2.12. Let f and g be two polynomials, with g 6= 0. Then there exist a quotient
q and a remainder r which are polynomials such that

• f = gq+ r;

• either r = 0 or the degree of r is smaller than the degree of g.

The idea behind the proof of Theorem 2.12 is to follow the long division method
that we used in the example. The method goes like this: we multiply g by a constant
times a power of x and subtract that off of f , so that the difference has a smaller degree
than f . Then we keep going, doing further subtractions. How do you make “then keep
going” into a proof? The best way is induction. Let’s begin:

Proof. Our proof will be by induction on the degree of f . Let g be a fixed nonzero
polynomial (i.e. it will not change as we do the induction).

Base case. The base case is the case when deg( f )< deg(g) or f = 0. This is legitimate
as a base case because g is a fixed polynomial, so deg(g) is just some integer. Remem-
ber that we didn’t define the degree of the polynomial 0, so we need to “manually”
include it.

To prove the theorem in the base case, we set q = 0 and r = f .

Inductive hypothesis. Let n be a positive integer. The inductive hypothesis states
that, if f ∗ is a polynomial such that deg( f ∗)< n, then there exist polynomials q∗ and
r∗ such that

• f ∗ = gq∗+ r∗;

• either r∗ = 0 or the degree of r∗ is smaller than the degree of g.

I have put stars in the names of these polynomials so that I can save the letters f , q, r
without stars for the inductive case5. I didn’t need to put a star on g, because it won’t
be changing.

Inductive case. We assume the inductive hypothesis is true for n, and prove it for
n+1. If f is a polynomial such that deg( f )< n+1, then either deg( f )< n or deg( f )=
n. The case deg( f ) < n is covered by the inductive hypothesis for n. So the case we
have to do some work to prove is deg( f ) = n.

5You could use primes too, like f ′. I wanted to make sure no-one thought I meant the derivative.
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Let

f = anxn + l.d.t.,
g = bmxm + l.d.t.,

where we have used the abbreviation l.d.t. for “lower degree terms”. We have an 6= 0,
bm 6= 0, and, because we are not in the base case, n≥m. Now let’s “cancel the leading
term”. We have

(an/bm)xn−m ·g = anxn + l.d.t.,

and so the polynomial f ∗ = f − (an/bm)xn−m · g satisfies deg( f ∗) < n, because the
anxn term is cancelled out in the subtraction. So by the induction hypothesis, there
exist polynomials q∗ and r∗ such that

f ∗ = gq∗+ r∗,

where r∗ = 0 or deg(r∗)< deg(g). Then

f = f ∗+(an/bm)xn−m ·g

= g
(
(an/bm)xn−m +q∗

)
+ r∗,

so we can put q = (an/bm)xn−m +q∗ and r = r∗ to complete the proof.

Having proved a division rule for polynomials, we can now copy all the following
stuff about division that we did for integers. Here is a summary of the definitions and
results.

A non-zero polynomial is called monic if its leading coefficient is 1, that is, if it
has the form

f = xn +an−1xn−1 + · · ·+a1x+a0.

We also say that the zero polynomial is monic. If this sounds odd, you can regard it as
a convention. But if there is no non-zero coefficient, it is vacuously correct to say that
the non-zero coefficient with highest index is 1 (or indeed anything at all).

We say that g divides f if f = gq for some polynomial q. In other words, g divides
f if the remainder in the division rule is zero.

We define the greatest common divisor of two polynomials by the more advanced
definition that we met at the end of the last section. The greatest common divisor of f
and g is a polynomial d with the properties

(a) d divides f and d divides g;

(b) if h is any polynomial which divides both f and g, then h divides d;
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(c) d is monic (this includes the possibility that it is the zero polynomial).

The last condition is put in because, for any non-zero scalar c, each of the polynomials
f and c f divides the other. Without this condition, the gcd would not be uniquely
defined, since any non-zero constant multiple of it would work just as well. In the
world of nonnegative integers, the counterpart of this condition was the requirement
that gcd(a,b)≥ 0 (because each of d and −d divides the other).

Theorem 2.13. (a) Any two polynomials f and g have a greatest common divisor.

(b) The g.c.d. of two polynomials can be found by Euclid’s algorithm.

(c) If gcd( f ,g) = d, then there exist polynomials h and k such that

f h+gk = d;

these two polynomials can also be found from the extended version of Euclid’s
algorithm.

We will not prove this theorem in detail, since the proof works the same as that for
integers.

Here is an example. Find the gcd of x4 +2x3 + x2−4 and x3−1. By the division
rule,

x4 +2x3 + x2−4 = (x3−1) · (x+2)+(x2 + x−2),
x3−1 = (x2 + x−2) · (x−1)+(3x−3),

x2 + x−2 = (3x−3) · 1
3(x+2)+0.

The last divisor is 3x−3; dividing by 3, we obtain the monic polynomial x−1, which
is the required gcd.

Moreover, we have

3x−3 = (x3−1)− (x−1)(x2 + x−2)
= (x3−1)− (x−1)((x4 +2x3 + x2−4)− (x+2)(x3−1))
= (x2 + x−1)(x3−1)− (x−1)(x4 +2x3 + x2−4),

so
x−1 =−1

3(x−1) · (x4 +2x3 + x2−4)+ 1
3(x

2 + x−1) · (x3−1).

3 Relations
You have briefly met relations in Numbers, Sets and Functions, but they were defined
in a relatively informal fashion. In this module we will define them formally, and also
introduce the most important kind of relations, the equivalence relations, which will
be the cornerstone of several algebraic constructions.
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3.1 Ordered pairs and Cartesian product
We write {x,y} to mean a set containing just the two elements x and y. More generally,
{x1,x2, . . . ,xn} is a set containing just the n elements x1, x2, . . . , xn.

The order in which elements come in a set is not important. So {y,x} is the same
set as {x,y}. This set is sometimes called an unordered pair.

Often, however, we want the order of the elements to matter, and we need a differ-
ent construction. We write the ordered pair with first element x and second element
y as (x,y). This is not the same as (y,x) unless x and y are equal. You have seen this
notation used for the coordinates of points in the plane. The point with coordinates
(2,3) is not the same as the point with coordinates (3,2). The rule for equality of
ordered pairs is:

(x,y) = (u,v) if and only if x = u and y = v.

This notation can be extended to ordered n-tuples for larger n. For example, a point in
three-dimensional space is given by an ordered triple (x,y,z) of coordinates.

The idea of coordinatising the plane or
three-dimensional space by ordered pairs or triples
of real numbers was invented by Descartes. In his
honour, we call the system “Cartesian coordinates”.
This great idea of Descartes allows us to use
algebraic methods to solve geometric problems, as
you are learning in Vectors and Matrices this term.

By means of Cartesian coordinates, the set of all points in the plane is matched up
with the set of all ordered pairs (x,y), where x and y are real numbers. We call this set
R×R, or R2. This notation works much more generally, as we now explain.

Definition 3.1. Let X and Y be any two sets. We define their Cartesian product X×Y
to be the set of all ordered pairs (x,y), with x ∈ X and y ∈ Y ; that is, all ordered pairs
which can be made using an element of X as first coordinate and an element of Y as
second coordinate.

We write this as follows:

X×Y = {(x,y) : x ∈ X ,y ∈ Y}.

You should read this formula exactly as in the explanation. The notation

{x : P} or {x | P}
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means “the set of all elements x for which P holds”. This is a very common way of
specifying a set.

If Y = X , we write X×Y more briefly as X2. Similarly, if we have sets X1, . . . ,Xn,
we let X1×·· ·×Xn be the set of all ordered n-tuples (x1, . . . ,xn) such that x1 ∈ X1, . . . ,
xn ∈ Xn. If X1 = X2 = · · ·= Xn = X , say, we write this set as Xn.

If the sets are finite, we can do some counting. Remember that we use the notation
|X | for the number of elements of the set X (not to be confused with |z|, the modulus
of the complex number z, for example).

Proposition 3.2. Let X and Y be sets with |X |= p and |Y |= q. Then

(a) |X×Y |= pq;

(b) |Xn|= pn.

Proof. (a) In how many ways can we choose an ordered pair (x,y) with x ∈ X and
y ∈ Y ? There are p choices for x, and q choices for y. Each choice of x can be
combined with each choice for y, so we multiply the numbers. We don’t miss any
ordered pairs this way, nor do we count any of them more than once. Thus there are
pq different ordered pairs.6

(b) This is an exercise for you.

The “multiplicative principle” used in part (a) of the above proof is very important.
For example, if X = {1,2} and Y = {a,b,c}, then we can arrange the elements of X×Y
in a table with two rows and three columns as follows:

(1,a) (1,b) (1,c)
(2,a) (2,b) (2,c)

3.2 Relations
Suppose we are given a set of people P1, . . . ,Pn. What does the relation of being sisters
mean? For each ordered pair (Pi,Pj), either Pi and Pj are sisters, or they are not; so we
can think of the relation as being a rule of some kind which answers “true” or “false”
for each pair (Pi,Pj).

But to say that a relation is “a rule of some kind” is not amenable to careful math-
ematical reasoning about the properties of relations. We want to formalise relations.
That is, we want to build a structure that will let us contain the data of a relation using

6In case you find the proof of part (a) unsatisfying, Prof. Peter Cameron has a blog post at https://
cameroncounts.wordpress.com/2011/09/21/the-commutative-law/ showing two approaches
which you could use to do it more rigorously.
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the mathematical building-blocks we know about already: functions, sets, sequences,
and so forth.

One perfectly workable way to encode the data would be as a function from a
Cartesian product {(Pi,Pj) : Pi,Pj people} to a special set {true, false}. If relations
had only been invented this year, this might indeed be the definition mathematicians
would settle on. But the accepted definition of relations dates back to the early twen-
tieth century, when the great projects of trying to put all of mathematics on rigorous
foundations were in progress, and set theory was at the core of the endeavour. So
relations are defined as a kind of set.

Definition 3.3. A relation R on a set X is a subset of the Cartesian product X2 =X×X .
That is, it is a set of ordered pairs of elements of X .

We think of the relation R as saying “true” about x and y if the pair (x,y) is in R,
and saying “false” otherwise. So, in our example, the sisterhood relation is set up as
the set of all ordered pairs (Pi,Pj) of people who are sisters.

Here is a mathematical example. Let X = {1,2,3,4}, and let R be the relation “less
than” (this means, the relation that holds between x and y if and only if x < y). Then
we can write R as a set by listing all the pairs for which this is true:

R = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}.

Here is another relation on X :

S = {(1,1),(1,2),(2,3),(3,1),(3,4),(4,2),(4,4)}.

I don’t know any simple rule describing S, the way R can be described as “less than”.
But that’s no problem. Just as I can specify a function by giving a table of values, with
no formula, I can write down a relation as a set without having a rule in mind7.

An example of a relation on an infinite set is the divisibility relation | on the set
Z≥0 which we defined in Section 1.2.

How many different relations are there on the set X = {1,2,3,4}? A relation on X
is a subset of X×X . There are 4×4 = 16 elements in X×X , by Proposition 3.2. How
many subsets does a set of size 16 have? For each element of the set, we can decide
to include that element in the subset, or to leave it out. The two choices can be made
independently for each of the sixteen elements of X2, so the number of subsets is

2 ·2 · · · · ·2 = 216 = 65536.
7For more on the similarity between functions and relations, see the appendix “Functions as rela-

tions” on QMPlus.
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So there are 65536 relations. Of course, most of them don’t have simple rules like
“less than”.

When you want to write that a number x is less than another number y, you are
used to writing x < y. In other words, you put the symbol for the relation between the
names of the two elements concerned. We allow ourselves to use a similar notation
for any relation. That is, if R is a relation, we can write x R y to mean (x,y) ∈ R.

3.3 Equivalence relations and partitions
Just as there are certain laws that operations like multiplication may or may not satisfy,
so there are laws that relations may or may not satisfy. Here are some important ones.

Let R be a relation on a set X . We say that R is

reflexive if (x,x) ∈ R for all x ∈ X ;

symmetric if (x,y) ∈ R implies that (y,x) ∈ R;

transitive if (x,y) ∈ R and (y,z) ∈ R together imply that (x,z) ∈ R.

For example, the relation “less than” is not reflexive (since no element is less than
itself); is not symmetric (since x < y and y < x cannot both hold); but is transitive
(since x < y and y < z do imply that x < z). The relation of being sisters, where x and
y satisfy the relation if each is the sister of the other, is not reflexive: it is debatable
whether a woman can be her own sister (we will say no), but a man certainly cannot! It
is obviously symmetric, though. Is it transitive? Nearly: if x and y are sisters, and y and
z are sisters, then x and z are sisters unless it happens that x = z. But this is certainly
a possible case. So we conclude that the relation is not transitive. [Remember that, to
be transitive, the condition has to hold without exception; any exception would be a
counterexample which would disprove the transitivity.]

A very important class of relations are called equivalence relations. An equiva-
lence relation is a relation which is reflexive, symmetric, and transitive.

Before seeing the job that equivalence relations do in mathematics, we need an-
other definition.

Definition 3.4. Let X be a set. A partition of X is a set P of subsets of X , whose
elements are called its parts, having the following properties:

(a) /0 is not a part of P;

(b) if A and B are distinct parts of P , then A∩B = /0;

(c) The union of all parts of P is X .
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So each set is non-empty; no two sets have any element in common; and between
them they cover the whole of X . The name “partition” arises because the whole set X
is divided up into disjoint parts.

For example, {{a,e},{b,d},{c}} is a partition of {a,b,c,d,e} with three parts,
whereas {{a,b,c},{c,d}} is not a partition (of any set) because c is in two different
parts, violating property (b). More abstractly, the figure below represents a partition
P = {A1, . . . ,A5} of a set X = A1∪·· ·∪A5.

A1 A2 A3 A4 A5

The statement and proof of the next theorem are quite long, but the message is very
simple. The job of an equivalence relation on X is to produce a partition of X ; every
equivalence relation gives a partition, and every partition comes from an equivalence
relation. This result is called the Equivalence Relation Theorem.

First we need one piece of notation. Let R be a relation on a set X , and let x be an
element of X . We write [x]R for the set of elements of X which are related to x; that is,

[x]R = {y ∈ X : (x,y) ∈ R}.

For example, if R is the relation of being sisters, then [x]R is the set of all sisters of x.

Definition 3.5. If R is an equivalence relation, then the sets [x]R are called the equiv-
alence classes of R.

If R is not an equivalence relation, then there is no name in general use for the set [x]R.

Theorem 3.6 (Equivalence Relation Theorem). (a) Let R be an equivalence rela-
tion on X. Then the sets [x]R, for x ∈ X, form a partition of X.

(b) Conversely, given any partition P of X, there is a unique equivalence relation
R on X such that the parts of P are the same as the sets [x]R for x ∈ X.

Proof. (a) We have to show that the sets [x]R satisfy the conditions in the definition of
a partition of X .

• For any x, we have (x,x) ∈ R (since R is reflexive), so x ∈ [x]R; thus [x]R 6= /0.

• We have to show that, if [x]R 6= [y]R, then [x]R∩ [y]R = /0. The contrapositive of
this is: if [x]R ∩ [y]R 6= /0, then [x]R = [y]R; we prove this. Suppose that [x]R ∩
[y]R 6= /0; this means that there is some element, say z, lying in both [x]R and
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[y]R. By definition, (x,z) ∈ R and (y,z) ∈ R; hence (z,y) ∈ R by symmetry and
(x,y) ∈ R by transitivity.

We have to show that [x]R = [y]R; this means showing that every element in
[x]R is in [y]R, and every element of [y]R is in [x]R. For the first claim, take
u ∈ [x]R. Then (x,u) ∈ R. Also (y,x) ∈ R by symmetry; and we know that
(x,y) ∈ R; so (y,u) ∈ R by transitivity, and u ∈ [y]R. Conversely, if u ∈ [y]R, a
similar argument (which you should try for yourself) shows that u ∈ [x]R. So
[x]R = [y]R, as required.

• Finally we have to show that the union of all the sets [x]R is X , in other words,
that every element of X lies in one of these sets. But we already showed in the
first part that x belongs to the set [x]R.

(b) Suppose that P is a partition of x. We define a relation R as follows:

R = {(x,y) : x and y lie in the same part of P}.

Now

• x and x lie in the same part of the partition, so R is reflexive.

• If x and y lie in the same part of the partition, then so do y and x; so R is
symmetric.

• Suppose that x and y lie in the same part A of the partition, and y and z lie in the
same part B. Then y ∈ A and y ∈ B, so y ∈ A∩B; so we must have A = B, since
different parts are disjoint. Thus x and z both lie in A. So R is transitive.

Thus R is an equivalence relation. By definition [x]R consists of all elements lying in
the same part of the partition P as x; so, if x ∈ A, then [x]R = A. So the partition P
consists of the sets [x]R.

We leave it as an exercise to check the uniqueness claim of the theorem, that is,
that R is the only equivalence relation whose parts are the sets [x]R.

Here is an example. There are five partitions of the set {1,2,3}. One has a single
part; three of them have one part of size 1 and one of size 2; and one has three parts of
size 1. Here are the partitions and the corresponding equivalence relations.

Partition Equivalence relation
{{1,2,3}} {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}
{{1},{2,3}} {(1,1),(2,2),(2,3),(3,2),(3,3)}
{{2},{1,3}} {(1,1),(1,3),(2,2),(3,1),(3,3)}
{{3},{1,2}} {(1,1),(1,2),(2,1),(2,2),(3,3)}
{{1},{2},{3}} {(1,1),(2,2),(3,3)}
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Since partitions and equivalence relations amount to the same thing, we can use
whichever is more convenient.

Example Let X = Z, and define a relation ≡4, called “congruence mod 4”, by the
rule

a≡4 b if and only if b−a is a multiple of 4, that is, b−a = 4m for some
m ∈ Z.

Don’t be afraid of the notation; “≡4” is a different kind of symbol to “R”, but we can
use them the same way.

We check that this is an equivalence relation.

reflexive? a−a = 0 = 4 ·0, so a≡4 a.

symmetric? If a≡4 b, then b−a = 4m, so a−b =−4m = 4 · (−m), so b≡4 a.

transitive? If a≡4 b and b≡4 c, then b−a= 4m and c−b= 4n, so c−a= 4m+4n=
4(m+n), so a≡4 c.

What are its equivalence classes?

• [0]≡4 = {b : b−0= 4m}= {. . . ,−8,−4,0,4,8,12, . . .}, the set of multiples of 4.

• [1]≡4 = {b : b−1 = 4m}= {. . . ,−7,−3,1,5,9, . . . ,}, the set of numbers which
leave a remainder of 1 when divided by 4.

• Similarly [2]≡4 and [3]≡4 are the sets of integers which leave a remainder of 2 or
3 respectively when divided by 4.

• At this point we have caught every integer in one of these four parts, so we have
a complete partition of Z. The other equivalence classes repeat the ones we have
already seen: [4]≡4 = [0]≡4 , [5]≡4 = [1]≡4 , etc.

We are about to start modular arithmetic, where we will be doing computations
with these equivalence classes. For our proofs, one small part of the picture in Theo-
rem 3.6 will be constantly useful.

Corollary 3.7. Let R be an equivalence relation on a set X, and x,y ∈ X. Then [x]R =
[y]R if and only if xRy.

Proof. Assume [x]R = [y]R. As before, reflexivity of R implies that y ∈ [y]R. So also
y ∈ [x]R, which by definition of [x]R is the same assertion as xRy.

For the converse, we assume xRy, that is y ∈ [x]R. Since y ∈ [y]R also, we have two
parts [x]R and [y]R of the partition in Theorem 3.6 that are not disjoint. So these parts
must be equal, that is, [x]R = [y]R.
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4 Modular arithmetic
You are probably familiar with rules of parity like “odd + odd = even” and “odd · even
= even”. These rules are a first example of modular arithmetic, which is a form of
algebra based on remainders. The rule “odd + odd = even” says that if a and b are
integers which both have remainder 1 when divided by 2, then a+b has remainder 0
when divided by 2. Similar rules exist for dividing by integers other than 2. They are
the subject of this section.

4.1 Congruence mod m

The formalisation of modular arithmetic is based on a very important equivalence
relation. Let X = Z, the set of integers.

Definition 4.1. We define a relation ≡m on Z, called congruence mod m, where m is
a positive integer, as follows:

a≡m b if and only if b−a is a multiple of m.

We read a ≡m b are “a is congruent to b mod m”. Some people write the relation
a≡m b as a≡ b (mod m).

We check the conditions for it to be an equivalence relation.

reflexive: x− x = 0 ·m, so x≡m x.

symmetric: if x ≡m y, then y− x = cm for some integer c, so x− y = (−c)m, so
y≡m x.

transitive: if x≡m y and y≡m z, then y−x = cm and z−y = dm, so z−x = (c+d)m,
so x≡m z.

So ≡m is an equivalence relation.
This means that the set of integers is partitioned into equivalence classes of the

relation ≡m. These classes are called congruence classes mod m. We write [x]m for
the congruence class mod m containing the integer x. (This is the set we wrote as [x]R
in the Equivalence Relation Theorem, where R was the name of the relation. So we
should really write [x]≡m . But this looks a bit odd, so we abbreviate it to [x]m instead.)

For example, when m = 4, we have

[0]4 = {. . . ,−8,−4,0,4,8,12, . . .},
[1]4 = {. . . ,−7,−3,1,5,9,13, . . .},
[2]4 = {. . . ,−6,−2,2,6,10,14, . . .},
[3]4 = {. . . ,−5,−1,3,7,11,15, . . .},
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and then the pattern repeats: [4]4 is the same set as [0]4 (since 0 ≡4 4). So there are
just four equivalence classes. More generally:

Proposition 4.2. The equivalence relation ≡m has exactly m equivalence classes,
namely [0]m, [1]m, [2]m, . . . , [m−1]m.

Proof. Given any integer n, we can divide it by m to get a quotient q and remainder r,
so that n = mq+ r and 0 ≤ r ≤ m−1. Then n− r = mq, so r ≡m n, and n ∈ [r]m. So
every integer lies in one of the classes [0]m, [1]m, [2]m, . . . , [m−1]m.

We must also check that these classes are all different, because if not there would
be fewer than m of them. Let i and j be integers in the range 0, . . . ,m− 1. We wish
to prove that [i]m 6= [ j]m. By Corollary 3.7, it is equivalent to prove i 6≡m j. But our
assumption implies −m+1≤ j− i≤ m−1, so j− i cannot be a multiple of m unless
it equals 0, that is unless i = j.

To give a practical example, what is the time on the 24-hour clock if 298 hours have
passed since midnight on 1 January this year? Since two events occur at the same time
of day if their times are congruent mod 24, we see that the time is [298]24 = [10]24,
that is, 10:00am, or 10 in the morning.
Notation. We use the notation Zm for the set of congruence classes mod m. Thus,
|Zm| = m. Remember that vertical bars around a set mean the number of elements in
the set.

4.2 Operations on congruence classes
We define addition, subtraction, and multiplication of congruence classes as follows:

[a]m +[b]m := [a+b]m,
[a]m− [b]m := [a−b]m,
[a]m · [b]m := [a ·b]m.

Look carefully at these supposed definitions. First, notice that the symbols for
addition, subtraction, and multiplication on the left are the things being defined. On
the right we take the ordinary addition etc. of integers.

The second important thing is that we have to do some work to show that we
have defined anything at all. The inputs to the addition operation we have defined are
congruence classes—that is, sets— but we have done it by writing the sets as [a]m and
[b]m, and then working with a and b. Remember that there are lots of ways to write
the same congruence class in the form [x]m !

Suppose a′ and b′ are different integers such that [a]m = [a′]m and [b]m = [b′]m.
What guarantee have we that [a+b]m = [a′+b′]m? If this is not true, then our definition
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is worthless, because the same pair of congruence classes could have two different
sums, depending on whether we happened to pick a and b, or a′ and b′, from the
classes.

So let’s try to prove it. Corollary 3.7 helps with this proof again. The assumptions
[a]m = [a′]m and [b]m = [b′]m unravel to a≡m a′ and b≡m b′, and we would like to prove
a+b≡m a′+b′. Now we know that there are integers c and d such that

a′−a = cm, and
b′−b = dm. So

(a′+b′)− (a+b) = (c+d)m,

so indeed a+b≡m a′+b′. Similarly, with the same assumption,

(a′−b′)− (a−b) = (c−d)m,

so a−b≡m a′−b′. And

a′b′−ab = (cm+a)(dm+b)−ab
= m(cdm+ cm+ad)

so ab≡m a′b′. So our definition is valid.

For example, here are an “addition table” and “multiplication table” for the inte-
gers mod 4. To make the tables easier on the eyes, I have written 0,1,2,3 instead of
the correct forms [0]4, [1]4, [2]4, [3]4.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

4.3 Modular inverses
We have just defined addition, subtraction, and multiplication in modular arithmetic.
What about division?

If a and b are real numbers, then

a
b
= a · 1

b
.

Therefore if we know how to multiply and how to compute reciprocals, we can divide
by combining these two ingredients.
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We will approach the question of division in modular arithmetic the same way, and
ask for a reciprocal, or multiplicative inverse, of a single element. That is, given the
element [a]m, we seek an element [b]m such that

[a]m[b]m = [1]m.

If we find it, we write [b]m = [a]−1
m .

But we find that not every element in Zm has a multiplicative inverse. For example,
[2]4 has no inverse. If you look at row 2 of the multiplication table for Z4, you see that
it contains only the entries 0 and 2, so there is no element [b]4 such that [2]4[b]4 = [1]4.
However, [1]4 and [3]4 do have inverses, which are unique.

In Z5 we are luckier. Every non-zero element has an inverse, since

[1]5[1]5 = [1]5, [2]5[3]5 = [1]5, [4]5[4]5 = [1]5.

This is the best that can be hoped for. In Zm, just like in R, you can’t divide by zero.

Theorem 4.3. The element [a]m of Zm has a multiplicative inverse if and only if
gcd(a,m) = 1.

Proof. We have two things to prove: if gcd(a,m) = 1, then [a]m has an inverse; if [a]m
has an inverse, then gcd(a,m) = 1.

First we translate the fact that [a]m has an inverse. If [b]m is the inverse, this means
that

[ab]m = [a]m[b]m = [1]m,

so ab≡m 1; in other words,
ab−1 = xm (*)

for some integer x. So [a]m has an inverse if and only if we can solve this equation.
Let d = gcd(a,m). Suppose first that [a]m has an inverse [b]m, so that the equation

has a solution. Then d divides a and d divides m, so d divides ab− xm = 1, whence
d = 1.

In the other direction, suppose that gcd(a,m) = 1. The extended Euclid’s algo-
rithm, Theorem 1.8, shows that there exist integers u and v such that ua+vm = 1. This
rearranges to ua−1 =−vm, so we can solve equation (*) with b = u and x =−v.

Example What is the inverse of [4]21? First we find gcd(4,21) by Euclid’s algo-
rithm:

21 = 4 ·5+1,
4 = 4 ·1,
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so gcd(4,21) = 1. This shows that there is an inverse. Now the calculation gives

1 = 21−5 ·4,

so the inverse of [4]21 is [−5]21 = [16]21.

Note that if p is a prime number, then gcd(a, p) = 1 for all 0 < a < p, which
means we may divide by any nonzero element of Zp. We take this idea up again in
Theorem 5.7.

5 Algebraic structures
We will now embark on the programme I promised at the start of the module, the
axiomatic method. By now we have seen several examples of sets whose elements
can be added and multiplied, including long familiar sets of numbers like Z and R and
new sets like R[x] and Zm. We would like to make a single definition that encompasses
all of them. That way, if we can write a proof of some algebraic fact that uses only
assumptions in this single definition, our proof will automatically be valid in every
one of these systems.

What kind of objects are addition and multiplication? They are a special kind of
function, which we call operations.

Definition 5.1. A (binary8) operation on a set X is a function whose domain is X×X
and whose codomain is X .

In other words, the input to this function consists of a pair (x,y) of elements of X ,
and the output is a single element of X . So we can think of the operation as a rule that
“combines” two inputs from X in some way to produce an output in X . Recall that we
can use the notation f : X×X → X for such a function.

So we might invent the following definition.

Draft definition. An algebraic structure is a set X that comes with two operations +
and · on X .

But this is no good. If we have an “algebraic structure” in this sense, we can’t
do any algebra with it. Nothing in the draft definition ensures that the procedures
we like to use in algebraic manipulations, such as collecting like terms or expanding
parentheses, are logically correct inferences in X . There is no guarantee that the “+”

8I will just say “operation” in this module, but the more explicit name binary operation distinguishes
them from unary operations f : X → X and ternary operations f : X×X×X → X and so on.
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and “·” in X behave how we expect addition and multiplication to behave. So our
actual definitions will include some laws that addition and multiplication must satify.

It is an important point that we will not include in the definition a rule for how
to work out sums and products, only laws restricting them. (By their deeds shall ye
know them.) How could we give a rule when we don’t even know what the set X
is? We would have to give the rules for complex numbers, polynomials, matrices, . . .
separately. And this would spoil our hopes of generality: when we encountered a new
algebraic system it wouldn’t be on the list, so it wouldn’t fit the definition.

5.1 Fields
Here is our first actual definition.

Definition 5.2. A field is a set K of elements that comes with9 two operations on K,
addition (written +) and multiplication (written · or just by juxtaposing the factors),
which satisfies the following axioms.

Additive laws:

(A0) Closure law: For all a,b ∈ K, we have a+b ∈ K.

(A1) Associative law: For all a,b,c ∈ K, we have a+(b+ c) = (a+b)+ c.

(A2) Identity law: There exists an element 0 ∈ K such that for all a ∈ K, we have
a+0 = 0+a = a.

(A3) Inverse law: For all a ∈ K, there exists an element b ∈ K such that a+ b =
b+a = 0. We write b as −a.

(A4) Commutative law: For all a,b ∈ K, we have a+b = b+a.

Multiplicative laws:

(M0) Closure law: For al a,b ∈ K, we have ab ∈ K.

(M1) Associative law: For all a,b,c ∈ K, we have a(bc) = (ab)c.

(M2) Identity law: There exists an element 1 ∈ K such that for all a ∈ K, we have
a1 = 1a = a.

9What is “comes with”, rigorously? A completely formal definition of a field would say that it is a
triple (K,+, ·) where K is a set, + and · and are operations on K. I haven’t cast my definition this way
because the language is less cumbersome if we get to say that the field is the set: for example, we can
then speak of “elements of a field”.
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(M3) Inverse law: For each a ∈ K which is not equal to 0, there exists an element
b ∈ K such that ab = ba = 1. We write b as a−1.

(M4) Commutative law: For all a,b ∈ K, we have ab = ba.

Mixed laws:

(D) Distributive law: For all a,b,c ∈ K, we have

(LD) a(b+ c) = ab+ac (the “left distributive law”) and

(RD) (b+ c)a = ba+ ca (the “right distributive law”).

(NT) Nontriviality law: 1 6= 0.

Many of these axioms deserve some explanation. You might want to come back to
the following commentary after reading the examples.

• Strictly speaking, the closure laws are not necessary, since to say that + is an
operation on R means that when we input a and b to the function “+”, the
output belongs to R. We put the closure laws in as a reminder that, when we are
checking that something is a field, we have to be sure that this holds.10

• We have to be careful about what the identity and inverse laws mean. The
identity law for multiplication, e.g., means that there is a particular element e
in our system such that ea = a for every element a. In the case of number
systems, this element e is the number 1, and it is on this account that we used
the symbol “1” for the identity element, not “e”. But other algebraic systems
need not literally contain the real number 1, so e, or “1”, may have to be some
other element. The same goes for “0” in the additive identity law.

• The elements “0” and “1” are given their meaning by the identity laws, and
they are later referred to in the inverse laws. If the 0 and 1 weren’t unique, this
would be a problem with the definition: which 0 and which 1 are the inverse
laws talking about? But we will prove shortly (Propositions 5.8 and 5.9) that
these identity elements are unique.

• We do not bother to try to check the inverse laws unless the corresponding iden-
tity law holds. If (say) the multiplicative identity law does not hold, then there is
no element “1”, and without this the rest of the inverse law doesn’t make sense.

10For example, checking the closure law for a group will become very essential in Section 8.6.
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• We have stated the identity and inverse laws and the distributive law in a redun-
dant way. Since we go on to state commutative laws, we could simply have said
in e.g. the multiplicative identity law that 1a = a. We’ll see the reason soon,
when we define rings.

• If 0 = 1 in K, then for every element a of K we have

a = 1a = 0a = 0.

So the only algebraic systems ruled out from being fields by the nontriviality
law are sets with one element. But note that the equation 0a = 0 is not a field
axiom! See Proposition 5.11 for why this equation is true.

The sets Q of rational numbers and R of real numbers are two familiar examples
of fields. In this module we will take it on trust that the laws of algebra we have laid
out above hold for these sets.

The set C of complex numbers is also a field, but here we don’t have to take the
laws on trust. We can prove them from the way C was defined. We repeat the definition
here, laid out to match our definition of “field”.

Definition 5.3. The field C of complex numbers has set of elements

{a+bi : a,b ∈ R},

addition and mutiplication operations defined by

(a+bi)+(c+di) := (a+ c)+(b+d)i,
(a+bi) · (c+di) := (ac−bd)+(ad +bc)i,

and identity elements 0 = 0+0i and 1 = 1+0i.

To prove that C is a field, we have to prove that all twelve of the field axioms
are true. Here, for example, is a proof of the left distributive law. Let z1 = a1 + b1i,
z2 = a2 +b2i, and z3 = a3 +b3i. Now

z1(z2 + z3) = (a1 +b1i)((a2 +a3)+(b2 +b3)i)
= (a1(a2 +a3)−b1(b2 +b3))+a1(b2 +b3)+b1(a2 +a3))i,

and

z1z2 + z1z3 = ((a1a2−b1b2)+(a1b2 +a2b1)i)+((a1a3−b1b3)+(a1b3 +a3b1)i)
= (a1a2−b1b2 +a1a3−b1b3)+(a1b2 +a2b1 +a1b3 +a3b1)i,
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and a little bit of rearranging, using the laws of algebra we have granted for real
numbers, shows that the two expressions are the same.

And here is a proof of the multiplicative inverse law. Let z = a+bi be a complex
number which is not zero. Then at least one of a and b is a nonzero real number. This
implies that a2 +b2 > 0: since squares of real numbers are never negative, a2 +b2 is
greater than or equal to 0, and the only way it could be equal is if a2 = b2 = 0, which
was ruled out by assumption. This means the complex number

w =

(
a

a2 +b2

)
+

(
−b

a2 +b2

)
i

is well-defined; we have not divided by zero. Now w is the multiplicative inverse of z,
because

zw =

(
a · a

a2 +b2 −b · −b
a2 +b2

)
+

(
a · −b

a2 +b2 +b · a
a2 +b2

)
i

=
a2 +b2

a2 +b2 +
−ab+ab
a2 +b2 · i

= 1+0i = 1

and

wz =
(

a
a2 +b2 ·a−

−b
a2 +b2 ·b

)
+

(
a

a2 +b2 ·b+
−b

a2 +b2 ·a
)

i

=
a2 +b2

a2 +b2 +
ab−ab
a2 +b2 · i

= 1+0i = 1.

5.2 Rings
Fields are the “best behaved” algebraic structures: they are the structures in which the
greatest number of rules of algebra from school continue to hold true. For example,
the way we solved the linear equation in Section 2.3 works in any field.

But being a field is very restrictive. Some of our algebraic structures, like Z and
R[x], are not fields, and so we will not be able to prove results about them if we start
from the field axioms. Our solution to this will be to make a new definition, that of
a ring, with fewer laws, so that all of the systems we have encountered will be rings,
and we can handle them all with the axiomatic method.

Definition 5.4. A ring R is defined to be a set with two operations, + and ·, satisfying
the following axioms:
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• the additive closure, associative, identity, inverse, and commutative laws;

• the multiplicative closure and associative laws;

• and the distributive law.

We also have special names for algebraic structures which satisfy more laws than
a ring but not as many as a field. Let R be a ring. We say that R is a ring with identity
if it satisfies the multiplicative identity law. We say that R is a skewfield if it is a
ring with identity and also satisfies the multiplicative inverse and nontriviality laws.
We say that R is a commutative ring if it satisfies the multiplicative commutative law.
(Note that the word “commutative” here refers to the multiplication; the addition in a
ring is always commutative.)

Putting these three definitions together – and illustrating some of the grammati-
cal flexibility in the terminology – we could say that a field is the same thing as a
commutative skewfield with identity.

Here is the reason for the “redundancy” in the axioms we mentioned last section:
In a non-commutative ring, we need to assume both parts of the identity and multi-
plicative inverse laws, since one does not follow from the other in the absence of a
commutative law. Similarly, we do need both the left and right parts of the distributive
law.

Examples 5.5. Let’s apply this new terminology to familiar rings of numbers.

• Q, R and C are fields. Therefore, they are commutative rings, skewfields, and
rings with identity.

• Z is a commutative ring with identity. However, it is not a skewfield, and there-
fore not a field. This is because it does not satisfy the multiplicative inverse law:
for example, the integer 2 has no multiplicative inverse in Z.

You may object that the multiplicative inverse of 2 is 1
2 . But 1

2 is not an integer,
and when we are testing the field axioms for the set Z, we are not allowed to use
numbers that are not elements of Z.

• Where have the natural numbers gone? The set Z≥0 is not even a ring, because
it does not satisfy the additive inverse law: there is no nonnegative integer b
such that b+1 = 0. The set Z>0 does even worse, failing to satisfy the additive
identity law.
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5.3 Rings from modular arithmetic
Theorem 5.6. The set Zm, with addition and multiplication mod m, is a commutative
ring with identity.

Proof. To prove a theorem like this, we must prove each one of the axioms for rings.
In these notes, I will only write down some parts of the proof, because the rest are
similar and I expect you will see how to do them.

Here is a proof of the left distributive law. We are trying to prove that

[a]m([b]m +[c]m) = [a]m[b]m +[a]m[c]m.

The left-hand side is equal to [a]m[b+c]m (by the definition of addition mod m), which
in turn is equal to [a(b+c)]m (by the definition of multiplication mod m. Similarly the
right-hand side is equal to [ab]m+[ac]m, which is equal to [ab+ac]m. Now a(b+c) =
ab+ac, by the distributive law for integers; so the two sides are equal.

Now let’s check the additive identity law. This law asserts that there should exist
an additive identity element (a “zero”); choosing [0]m for this element will make the
proof work. Having done so, the equation that we must prove is

[a]m +[0]m = [0]m +[a]m = [a]m.

By the definition of addition mod m, the two quantities on the left are [a+0]m = [a]m
and [0+a]m = [a]m, which is equal to the right hand side.

The other proofs are much the same. To show that two expressions involving
congruence classes are equal, just show that the corresponding integers are congruent.
The multiplicative identity element in Zm will be seen to be [1]m.

Unlike all the examples of rings we have seen so far, Z and R and the rest, the
rings Zm are finite sets. Personally, I find finite rings very useful to have in one’s stock
of mental examples. You can write down the entire addition and multiplication tables
and have the whole ring laid out in front of you. If push comes to shove, you can even
solve equations completely by brute force, by trying every possible value for each
variable!

Remark on notation. In any ring, x2 is short for x · x, and x3 for x · x · x, and so on.
Example. Find all solutions in Z6 to the equation x2 = x.
Solution. We compute the square of every element of Z6 :

x [0]6 [1]6 [2]6 [3]6 [4]6 [5]6
x2 [0]6 [1]6 [4]6 [9]6 = [3]6 [16]6 = [4]6 [25]6 = [1]6

43



So x = [0]6, [1]6, [3]6, and [4]6 are all the solutions to x2 = x.

Does Zm satisfy the multiplicative inverse law? We can give a tidy answer using
Theorem 4.3.

Theorem 5.7. Suppose that p is a prime number. Then Zp is a field.

Proof. Building on Theorem 5.6, we have two properties left to prove. One is the
nontriviality law, that [1]p 6= [0]p. This is true: p - 1− 0 = 1 when p is a prime,
because 1 is not prime.

The other is the multiplicative inverse law. To prove this, we must show that
every non-zero element of Zp has an inverse. If p is prime, then every number a with
1≤ a < p satisfies gcd(a, p) = 1. (For the gcd divides p, so can only be 1 or p; but p
clearly doesn’t divide a.) Then Theorem 4.3 implies that [a]p has an inverse in Zp.

5.4 Properties of rings
We now give a few properties of rings. Since we only use the ring axioms in the
proofs, and not any special properties of the elements, these are valid for all rings.
This is the advantage of the axiomatic method.

Proposition 5.8. In a ring R,

(a) there is a unique zero element;

(b) any element has a unique additive inverse.

Proof. (a) Suppose that z and z′ are two zero elements. This means that, for any a∈ R,

a+ z = z+a = a,
a+ z′ = z′+a = a.

Now we have z+ z′ = z′ (putting a = z′ in the first equation) and z+ z′ = z (putting
a = z in the second). So z = z′.

This justifies us in calling the unique zero element 0.

(b) Suppose that b and b′ are both additive inverses of a. This means that

a+b = b+a = 0,
a+b′ = b′+a = 0.

Hence
b = b+0 = b+(a+b′) = (b+a)+b′ = 0+b′ = b′.
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(Here the first and last equalities hold because 0 is the zero element; the second and
second last are our assumptions about b and b′; and the middle equality is the associa-
tive law.

This justifies our use of −a for the unique inverse of a.

Proposition 5.9. Let R be a ring.

(a) If R has an identity, then this identity is unique.

(b) If a ∈ R has a multiplicative inverse, then this inverse is unique.

The proof is almost identical to that of the previous proposition, and is left as an
exercise.

The next result is called the cancellation law.

Proposition 5.10. Let R be a ring. If a+b = a+ c, then b = c.

Proof.

b = 0+b = (−a+a)+b =−a+(a+b) =−a+(a+c) = (−a+a)+c = 0+c = c.

Here the third and fifth equalities use the associative law, and the fourth is what we
are given. To see where this proof comes from, start with a+b = a+ c, then add −a
to each side and work each expression down using the associative, inverse and zero
laws.

Remark. Try to prove that, if R is a field and a 6= 0, then ab = ac implies b = c.

The next result is something you might have expected to find amongst our basic
laws. But it is not needed there, since we can prove it!

Proposition 5.11. Let R be a ring. For any element a ∈ R, we have 0a = a0 = 0.

Proof. We have 0+0 = 0, since 0 is the zero element. Multiply both sides by a:

a0+a0 = a(0+0) = a0 = a0+0,

where the last equality uses the zero law again. Now from a0 + a0 = a0 + 0, we
get a0 = 0 by the cancellation law. The other part 0a = 0 is proved similarly; try it
yourself.
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There is one more fact we need. This fact uses only the associative law in its proof,
so it holds for both addition and multiplication. To state it, we take � to be a binary
operation on a set X , which satisfies the associative law. That is,

a� (b� c) = (a�b)� c

for all a,b,c ∈ X . This means that we can write a�b� c without ambiguity.
What about applying the operation to four elements? We have to put in brackets

to specify the order in which the operation is applied. There are five possibilities:

a� (b� (c�d))
a� ((b� c)�d)
(a�b)� (c�d)
(a� (b� c))�d
((a�b)� c)�d

Now the first and second are equal, since b� (c�d) = (b� c)�d. Similarly the fourth
and fifth are equal. Consider the third expression. If we put x = a � b, then this
expression is x � (c � d), which is equal to (x � c) � d, which is the last expression.
Similarly, putting y = c�d, we find it is equal to the first. So all five are equal.

The same works for any number of elements.

Proposition 5.12. Let � be an operation on a set X which satisfies the associative law.
Then the value of the expression

a1 �a2 � · · · �an

is the same, whatever (legal) way n−2 pairs of brackets are inserted.

We will not prove this proposition, but you are encouraged to try to prove it your-
self (one way to approach the proof is mathematical induction on n).

6 New rings from old

6.1 Polynomial rings
In the first week of the module we discussed polynomials whose coefficients are real
or complex numbers. In fact, Definition 2.1 still works when the set R is allowed to be
any ring. Let’s repeat the definition with this substitution.
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Definition 6.1. Let R be a ring and x a formal symbol. A polynomial in x with coeffi-
cients in R is an expression

f = anxn +an−1xn−1 + · · ·+a1x+a0

where a0,a1, . . . ,an−1,an all lie in R. They are the coefficients of f .
The set of all such polynomials will be denoted by R[x].

All of the remarks that followed Definition 2.1 are still true when R is a ring.

With this definition, however, we have changed our point of view on polynomi-
als. Polynomials will no longer be functions, in which a number is to be substituted
for x; instead they will be expressions to be manipulated algebraically, just like the
expressions “a+b i” that we call complex numbers. Therefore we have declared x to
be a formal symbol. This means that the symbol x, and expressions involving it, are
assumed to be inert and have no meaning other than the meaning given to them by
definitions. The imaginary unit i is another example of a formal symbol11.

In Definition 6.1, the powers x2,x3, . . . are formal symbols as well. In particular,
the definition does not tell us that x times x is x2! But we wish to make R[x] into a ring.
In pursuit of this we are about to define addition and multiplication operations on it,
and the latter will tell us that x times x is x2.

Let

f = amxm +am−1xm−1 + · · ·+a1x+a0 and

g = bnxn +bn−1xn−1 + · · ·+b1x+b0

be two polynomials in R[x]. To define their sum, it is most convenient to assume m= n,
which we are free to do by supplying leading zero coefficients. Then

f +g = (an +bn)xn + · · ·+(a1 +b1)x+(a0 +b0).

The product of f and g is defined by

f g = ambnxm+n +(ambn−1 +am−1bn)xm+n + · · ·
· · ·+(a2b0 +a1b1 +a0b2)x2 +(a1b0 +a0b1)x+a0b0;

the coefficient of the general term xk is the sum of the products aib j for all pairs of
indices i, j with i+ j = k. Don’t be put off by the formidable look of this definition. It
simply expresses the usual procedure for multiplying polynomials, namely to expand,
multiply the terms pairwise, and then collect like terms.

Note that the formal symbol x commutes with each element of R, that is x · r =
rx = r · x for all r ∈ R, even if R is not a commutative ring.

11Another word is often used: an indeterminate is a formal symbol that plays the role of a variable.
So the x in R[x] is an indeterminate, but the imaginary unit i is not.
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Theorem 6.2. If R is a ring, then so is R[x].
If R is a ring with identity, then so is R[x]. If R is commutative, then so is R[x].

The proof is long because of the number of axioms to check, so it will be post-
poned. But it not difficult.

Proposition 6.3. If R is a ring, then R[x] is not a skewfield.

Proof. If R has no nonzero elements, then neither does R[x], so R[x] is not a skewfield
because it does not satisfy the nontriviality law.

Otherwise, let b be a nonzero element of R. Then there is no polynomial f ∈ R[x]
such that

f ·bx = b,

because if f = anxn + · · ·+a0 we have

f ·bx = anbxn+1 + · · ·+a1bx

whose constant term is zero, not b. This means that bx cannot have a multiplicative
inverse g, because if it did, we could take f = b ·g and have

f ·bx = b ·g ·bx = b.

6.2 Matrix rings
Let R be a ring. An m×n matrix with coefficients in R is an array

a =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... · · · ...

am1 am2 · · · amn

 .

We frequently write a = (ai j)m×n in shorthand notation.
The set of all n× n matrices with coefficients in R is denoted by Mn(R). These

matrices, which have the same number of rows and columns, are known as square
matrices. We will only consider square matrices for the rest of this section. We are
about to define addition and multiplication: this can in fact be done for all matrices,
but matrix multiplication only gives an operation on a set, as defined at the start of
Section 5, for square matrices.

Define operations + and · on Mn(R) as follows:

(a+b)i j = ai j +bi j, and (a ·b)i j := ai1b1 j +ai2b2 j + · · ·+ainbn j =
n

∑
k=1

aikbk j

for all i, j = 1, . . . ,n.
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Theorem 6.4. If R is a ring, then so is Mn(R).
If R is a ring with identity, then so is Mn(R).

The proof is not difficult, but quite long, and is therefore deferred until Algebraic
Structures I next year. The point is that in order to do algebra with matrices, it is not
necessary for the entries to be numbers. All that is required is that the entries can be
added and multiplied and the results of these operations are again things of the same
kind.

Proposition 6.5. If R is a ring in which not all products of two elements equal zero,
and n≥ 2, then Mn(R) is neither a commutative ring nor a skewfield.

Proof. We will write the proof here for n = 2 only. The proof for general n is no
harder, it’s just more irritating to write down the matrices.

Let ab 6= 0 in R. Note that a and b cannot equal zero in R either, by Proposi-
tion 5.11. Then (

a 0
0 0

)(
0 b
0 0

)
=

(
0 ab
0 0

)
is not equal to (

0 b
0 0

)(
a 0
0 0

)
=

(
0 0
0 0

)
,

proving that M2(R) is not commutative.
We also use the second equation to show that M2(R) does not satisfy the multi-

plicative inverse law. Suppose that
(

0 b
0 0

)
had a multiplicative inverse; call it C.

Then C
(

0 b
0 0

)
= I, the (multiplicative) identity matrix. We can use these two facts

together to reach a contradiction:

C
(

0 b
0 0

)(
a 0
0 0

)
=C

(
0 0
0 0

)
=

(
0 0
0 0

)
by Proposition 5.11, while working in the other order gives

C
(

0 b
0 0

)(
a 0
0 0

)
= I
(

a 0
0 0

)
=

(
a 0
0 0

)
which is not the zero matrix because a 6= 0.

Examples 6.6. (a) Let R = C, let a =

(
i 0
0 −i

)
and b =

(
1 i
0 −1

)
. Then

a2 =

(
i 0
0 −i

)
·
(

i 0
0 −i

)
=

(
i2 0
0 i2

)
=

(
−1 0
0 −1

)
=−I2×2
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and similarly

b2 =

(
1 i
0 −1

)(
1 i
0 −1

)
=

(
1 i− i
0 1

)
= I2×2

(b) Now take R = Z2 to be integers mod 2. Then R = {[0]2, [1]2} by Proposition
6.1; here [0]2 is the zero element 0 of R and [1]2 is the identity element 1 of R.

If a =

(
1 1
0 1

)
∈M2(R) then

a2 =

(
1 1
0 1

)(
1 1
0 1

)
=

(
1 1+1
0 1

)
=

(
1 0
0 1

)
= I2×2

because 1+1 = 0 in R. Similarly, if b =

(
1 1
1 1

)
then b2 =

(
1+1 1+1
1+1 1+1

)
=(

0 0
0 0

)
is the zero matrix. Since

ab =

(
0 0
1 1

)
and ba =

(
1 0
1 0

)
we see that M2(Z2) is not commutative.

(c) Let R be a ring. Then so is M2(R) by the above Theorem. But now we can apply
the Theorem again to the ring M2(R) in place of R to deduce that M2(M2(R)) is
again a ring! Its elements are matrices of the form

(
a11 a12
a21 a22

) (
b11 b12
b21 b22

)
(

c11 c12
c21 c22

) (
d11 d12
d21 d22

)


where the ai j, bi j, ci j and di j all lie in R.

Can you see how this ring relates to M4(R)?

7 Permutations
So far, we have done algebra on numbers, polynomials, matrices, and sets. In this
chapter we turn our eye to another type of object: permutations, which are certain
special functions.
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7.1 Definition and notation
A permutation of a set X is a function f : X → X which is a bijection (one-to-one and
onto).

In this module we will focus on the case when X is a finite set. When there’s no
reason to use a different set, we will take X to be the set {1,2, . . . ,n} for convenience.
As an example of a permutation, we will take n = 8 and let f be the function which
maps 1 7→ 4, 2 7→ 7, 3 7→ 3, 4 7→ 8, 5 7→ 1, 6 7→ 5, 7 7→ 2, and 8 7→ 6.

We can represent a permutation in two-line notation. We write a matrix with two
rows and n columns. In the first row we put the numbers 1, . . . ,8; under each number
x we put its image under the permutation f . In our example, we have

f =
(

1 2 3 4 5 6 7 8
4 7 3 8 1 5 2 6

)
.

How many permutations of the set {1, . . . ,n} are there? We can ask this question
another way? How many matrices are there with two rows and n columns, such that the
first row has the numbers 1, . . . ,n in order, and the second contains these n numbers
in an arbitrary order? There are n choices for the first element in the second row;
then n− 1 choices for the second element (since we can’t re-use the element in the
first column); then n− 2 for the third; and so on until the last place, where the one
remaining number has to be put. So altogether the number of permutations is

n · (n−1) · (n−2) · · ·1.

This number is called n!, read “n factorial”, the product of the integers from 1 to n.
Thus we have proved:

Proposition 7.1. The number of permutations of the set {1, . . . ,n} is n! .

One of the first uses of permutations in mathematics was as a unified language for
symmetries. For example, as you know, a square has four axes of reflection symmetry,
and fourfold rotational symmetry around its centre.

Each of these symmetries describes some way that the square could be moved so
that it lines back up with itself. Let’s number the corners of the square, say like this.
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12

3 4

Now each symmetry, of whatever kind it is (reflection, rotation, . . . ), gives rise
to a permutation f , by declaring f (i) to be the label of the position where corner i
ends up after carrying out the symmetry. Thus an anticlockwise rotation by 90◦ yields

the permutation
(

1 2 3 4
2 3 4 1

)
, because corner 1 ends up where corner 2 started out,

etcetera. Reflection across the vertical line yields the permutation
(

1 2 3 4
2 1 4 3

)
.

And so on. Here’s a question to hold in the back of your mind as you read on: what
special properties does the set of all symmetries of a shape have?

7.2 Composition
Let f and g be permutations. We define the composition of f and g, written f ◦ g, to
be the permutation defined by

( f ◦g)(x) = f (g(x)).

Note that the permutation on the right, g, is the innermost and therefore applies
to x first. Do not confuse f ◦g with “apply f and then g”, which is g◦ f instead.

You should be aware that some mathematicians (including some who may be your
lecturers for further modules in algebra!12) use a different notation, in which functions
are written on the right hand side of their arguments, that is, they write x f rather than
f (x). To go with this notation, composition is also done the other way round, as
x( f g) = (x f )g2.

Here is a fact which we will need later.

Proposition 7.2. If f and g are permutations of {1, . . . ,n}, then f ◦g is as well.

Proof. The domain of f ◦g is the domain of f , and its codomain is the codomain of g.
Both are {1, . . . ,n}.

So we must show that f ◦ g is a bijection. First we prove injectivity. Suppose
( f ◦g)(x) = ( f ◦g)(y) for x,y ∈ {1, . . . ,n}, that is,

f (g(x)) = f (g(y)).

12In my impression, in this country, this is basically a generational divide: f (x) is the young alge-
braist’s choice, x f the old.
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Because f is injective, this implies g(x) = g(y). Then because g is injective, we con-
clude x = y. Therefore f ◦g is injective.

Next, surjectivity. Let z ∈ {1, . . . ,n}. We want to show that there is an x ∈
{1, . . . ,n} so that ( f ◦ g)(x) = z, that is f (g(x)) = z. Because f is surjective, there
is a y such that f (y) = z. And because g is surjective, there is an x such that g(x) = y.
Then f (g(x)) = f (y) = z as required, so f ◦g is surjective.

In practice, how do we compose permutations? (Practice is the right word here:
you should practise composing permutations until you can do it without stopping to
think.) Let f be the permutation we used as an example in the last section, and let

g =

(
1 2 3 4 5 6 7 8
6 3 1 8 7 2 5 4

)
.

The easiest way to calculate f ◦g is to take each of the numbers 1, . . . ,8, map it by g,
map the result by f , and write down the result to get the bottom row of the two-line
form for f ◦g. Thus, g maps 1 to 6, and f maps 6 to 5, so f ◦g maps 1 to 5. Next, g
maps 2 to 3, and f maps 3 to 3, so f ◦g maps 2 to 3. And so on.

Another way to do it is to re-write the two-line form for f by shuffling the columns
around so that the first row agrees with the second row of g. Then the second row will
be the second row of f ◦g. Thus,

f =
(

1 2 3 4 5 6 7 8
4 7 3 8 1 5 2 6

)
=

(
6 3 1 8 7 2 5 4
5 3 4 6 2 7 1 8

)
;

so

f ◦g =

(
1 2 3 4 5 6 7 8
5 3 4 6 2 7 1 8

)
.

To see what is going on, remember that a permutation is a function, which can be
thought of as a black box. The black box for f ◦g is a composite containing the black
boxes for f and g with the output of g connected to the input of f :

g f- - -

Now to calculate the result of applying f ◦ g to 1, we feed 1 into the input; the
first inner black box outputs 6, which is input to the second inner black box, which
outputs 5.
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We define a special permutation, the identity permutation, which leaves everything
where it is:

e =
(

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
.

Then we have e◦ f = f ◦ e = f for any permutation f .
Given a permutation f , we define the inverse permutation of f to be the permuta-

tion which “puts everything back where it came from” – thus, if f maps x to y, then
f−1 maps y to x. This is the inverse function in the usual sense, the same way the
square root function is the inverse of squaring.

f−1 can be worked out using the definition: find x1 such that f (x1) = 1 and then
set f−1(1) = x1; then do the same for 2, and so on. A method to speed this up is to
take the two-line form for f , shuffle the columns so that the bottom row is 12 . . . n,
and then interchange the top and bottom rows. For our example,

f =
(

1 2 3 4 5 6 7 8
4 7 3 8 1 5 2 6

)
=

(
5 7 3 1 6 8 2 4
1 2 3 4 5 6 7 8

)
,

so

f−1 =

(
1 2 3 4 5 6 7 8
5 7 3 1 6 8 2 4

)
.

We then see that f ◦ f−1 = f−1 ◦ f = e.

7.3 Cycles
We come now to a way of representing permutations which is more compact than the
two-line notation described earlier, but (after a bit of practice!) just as easy to calculate
with: this is cycle notation.

Let a1,a2, . . . ,ak be distinct numbers chosen from the set {1,2, . . . ,n}. The cycle
(a1,a2, . . . ,ak) denotes the permutation which maps a1 7→ a2, a2 7→ a3, . . . , ak−1 7→ ak,
and ak 7→ a1. If you imagine a1,a2, . . . ,ak written around a circle, then the cycle is the
permutation where each element moves to the next place round the circle. Any number
not in the set {a1, . . . ,ak} is fixed by this manoeuvre.

Notice that the same permutation can be written in many different ways as a cycle,
since we may start at any point:

(a1,a2, . . . ,ak) = (a2, . . . ,ak,a1) = · · ·= (ak,a1, . . . ,ak−1).

If (a1, . . . ,ak) and (b1, . . . ,bl) are cycles with the property that no element lies in
both of the sets {a1, . . . ,ak} and {b1, . . . ,bl}, then we say that the cycles are disjoint.
In this case, their composition is the permutation which acts as the first cycle on the
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as, as the second cycle on the bs, and fixes the other elements (if any) of {1, . . . ,n}.
The composition of any set of pairwise disjoint cycles can be understood in the same
way.

When working in cycle notation, to save space, we often omit the symbol ◦ for
composition, just like we usually leave out the multiplication sign ·.

Theorem 7.3. Any permutation can be written as a composition of disjoint cycles. The
representation is unique, up to the facts that the cycles can be written in any order, and
each cycle can be started at any point.

Proof. Our proof is an algorithm to find the cycle decomposition of a permutation. We
will consider first our running example:

f =
(

1 2 3 4 5 6 7 8
4 7 3 8 1 5 2 6

)
.

Now we do the following. Start with the first element, 1. Follow its successive images
under f until it returns to its starting point:

f : 1 7→ 4 7→ 8 7→ 6 7→ 5 7→ 1.

This gives us a cycle (1,4,8,6,5).
If this cycle contains all the elements of the set {1, . . . ,n}, then stop. Otherwise,

choose the smallest unused element (in this case 2, and repeat the procedure:

f : 2 7→ 7 7→ 2,

so we have a cycle (2,7) disjoint from the first.
We are still not finished, since we have not seen the element 3 yet. Now f : 3 7→ 3,

so (3) is a cycle with a single element. Now we have the cycle decomposition:

f = (1,4,8,6,5)(2,7)(3).

The general procedure is the same. Start with the smallest element of the set,
namely 1, and follow its successive images under f until we return to something we
have seen before. This can only be 1. For suppose that f : 1 7→ a2 7→ · · · 7→ ak 7→ as,
where 1 < s < k. Then we have f (as−1) = as = f (ak), contradicting the fact that f is
one-to-one. So the cycle ends by returning to its starting point.

Now continue this procedure until all elements have been used up. We cannot ever
stray into a previous cycle during this procedure. For suppose we start at an element
b1, and have f : b1 7→ · · · 7→ bk 7→ as, where as lies in an earlier cycle. Then as before,
f (as−1) = as = f (bk), contradicting the fact that f is one-to-one. So the cycles we
produce really are disjoint.

The uniqueness is hopefully clear.
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Here is a notational shortcut. Any cycle of length 1 is the identity permutation, and
composing with the identity permutation does nothing. So our example permutation
could be written simply as f = (1,4,8,6,5)(2,7), leaving out (3). The fact that 3 is
not mentioned means that it is fixed. (You may notice that there is a problem with this
convention: the identity permutation fixes everything, and so would be written just as
a blank space! We get around this either by leaving in one cycle (1) to represent it, or
by just calling it e.)

Example Write the permutation (1,4,2,3,5)(1,6,3,2,5,4)∈ S6 in disjoint cycle no-
tation.
Solution. The first thing I want to make clear is that f = (1,3,5,2,4)(1,5,4,2,6,3) is
a legitimate permutation! It is not in disjoint cycle notation, because there are numbers
repeated between the cycles, but it’s still meaningful.

Using the method from Theorem 7.3, we find the image of 1 (call it a2), then
the image of a2, and so on until the cycle closes. Now f is a composition of two
cycles g = (1,3,5,2,4) and h = (1,5,4,2,6,3). So f (1) = g(h(1)) = g(5) = 2. Next,
f (2) = g(h(2)) = g(6) = 6, where g fixes 6 because it does not appear. Continuing
this way, we find

f : 1 7→ 2 7→ 6 7→ 5 7→ 1.

As for the other cycles, f : 3 7→ 3 and f : 4 7→ 4 are fixed points, and as above we may
leave them out. So the answer is f = (1,2,6,5).

You should practise composing and inverting permutations in disjoint cycle nota-
tion. Finding the inverse is particularly simple: all we have to do to find f−1 is to
write each cycle of f in reverse order!

Cycle notation makes it easy to get some information about a permutation. For
instance, how many times must one compose f with itself, f ◦ f ◦ f · · · , to first get
back to the identity? We call this number the order of f . As for notation, by f ◦n we
mean f ◦ · · · ◦ f , with n repeats of f .

Proposition 7.4. The order of a permutation is the least common multiple of the
lengths of the cycles in its disjoint cycle representation.

To see what is going on, return to our running example:

f = (1,4,8,6,5)(2,7)(3).

Now elements in the first cycle return to their starting position after 5 steps, and again
after 10, 15, . . . steps. So, if f ◦n = e, then n must be a multiple of 5. But also the
elements 2 and 7 swap places if f is applied an odd number of times, and return to
their original positions after an even number of steps. So if f ◦n = e, then n must also
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be even. Hence if f ◦n = e then n is a multiple of 10. The point 3 is fixed by any
number of applications of f so doesn’t affect things further. Thus, the order of n is a
multiple of 10. But f 10 = e, since applying f ten times takes each element back to its
starting position; so the order is exactly 10.

Proof. For the proof we use a general permutation. If the cycle lengths are k1,k2, . . . ,kr,
then elements of the ith cycle are fixed by f ◦n if and only if n is a multiple of ki;
so f ◦n = e if and only if n is a multiple of all of k1, . . . ,kr, that is, a multiple of
lcm(k1, . . . ,kr). So this lcm is the order of f .

8 Groups
In this section we study a new algebraic structure, groups, and their properties. We
have seen two motivations for groups so far. For one, the additive and multiplicative
axioms for rings are very similar, and this similarity suggests considering a structure
(a group) with only a single operation, that might be either addition or multiplication.
The other is that the set of symmetries of any shape will form a group under compo-
sition. We treat the first of these below, but we will not formally define symmetries in
this module so a proper treatment of the second will have to wait for another time.

8.1 Definition
A group is a set G with an operation � on G satisfying the following axioms:

(G0) Closure law: for all a,b ∈ G, we have a�b ∈ G.

(G1) Associative law: for all a,b,c ∈ G, we have a� (b� c) = (a�b)� c.

(G2) Identity law: there is an element e ∈ G (called the identity) such that a � e =
e�a = a for any a ∈ G.

(G3) Inverse law: for all a ∈ G, there exists b ∈ G such that a�b = b�a = e, where
e is the identity. The element b is called the inverse of a, written a∗.

If in addition the following law holds:

(G4) Commutative law: for all a,b ∈ G we have a�b = b�a

then G is called a commutative group, or more usually an abelian group (after the
Norwegian mathematician Niels Abel).

If G is a group, then the size of the set |G| is known as the order of G.

The resemblance of the axioms for addition in a ring to the group axioms gives us
our first ready-made examples of groups.
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Theorem 8.1. Let R be a ring. Take G = R, with operation +. Then G is an abelian
group.

The group G is called the additive group of the ring R. Its identity is 0, and the
inverse of a is −a.

Proof. Each of the group axioms (G0) through (G3), as well as the commutative
law (G4), is the same assertion about the behaviour of the operation + on the set G=R
as the corresponding ring axiom (A0) through (A4). Because we have assumed R is a
ring, all of these properties hold of the operation +.

If you have encountered the definition of a vector space, you should be able to
prove along similar lines that any vector space V , with the operation of vector addition,
is an abelian group. The identity is the zero vector 0, and the inverse of a vector v
is −v.

What about the multiplication in R: does it yield a group? Expecting the set R with
the operation · to be a group turns out to be too naı̈ve. The additive identity element
0 in a ring never has a multiplicative inverse, and unlike the inverse law for rings, the
inverse law (G3) for groups contains no proviso that lets us overlook this. But it turns
out a group can be cooked up from the multiplication in a ring; we will see how in
section 8.5 below.

As another example, the operations on permutations we saw in Section 7 make
them into a group.

Theorem 8.2. The set of all permutations of {1, . . . ,n}, with the operation of compo-
sition, is a group.

Proof. The closure, identity and inverse laws have been verified in Section 7.2. So the
only other law we have to worry about is the associative law. We have

( f ◦ (g◦h))(x) = f ((g◦h)(x)) = f (g(h(x))) = ( f ◦g)(h(x)) = (( f ◦g)◦h)(x)

for all x; so the associative law, f ◦ (g◦h) = ( f ◦g)◦h, holds.
(Essentially, this last argument shows that the result of applying f ◦g◦h is “h, then

g, then f ”, regardless of how brackets are inserted.)

We call this group the symmetric group on n symbols, and write it Sn. Note that Sn
is a group of order n! .

Proposition 8.3. Sn is an abelian group if n≤ 2, and is non-abelian if n≥ 3.

Proof. S1 has order 1, and S2 has order 2; it is easy to check that these groups are
abelian, for example by writing down their Cayley tables.

For n≥ 3, Sn contains elements f = (1,2) and g = (2,3). Now check that f ◦g =
(1,2,3) does not equal g◦ f = (1,3,2).
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8.2 Elementary properties
Many of the simple properties work in the same way as for rings.

Proposition 8.4. Let G be a group.

(a) The identity of G is unique.

(b) Each element has a unique inverse.

(c) For any a,b ∈ G, we have (a�b)∗ = b∗ �a∗.

(d) Cancellation law: if a�b = a� c then b = c.

Here is how Proposition 8.4(d), the statement that (a � b)∗ = b∗ � a∗, is explained
by Hermann Weyl in his book Symmetry, published by Princeton University Press.

With this rule, although perhaps not with its
mathematical expression, you are all familiar. When
you dress, it is not immaterial in which order you
perform the operations; and when in dressing you
start with the shirt and end up with the coat, then in
undressing you observe the opposite order; first take
off the coat and the shirt comes last.

Proof. (a) If e and e′ are identities then

e = e� e′ = e′.

(b) If b and b′ are inverses of a then

b = b� e = b�a�b′ = e�b′ = b′.

(c) We have:

(a�b)� (b∗ �a∗) = a� (b�b∗)�a∗ = a� e�a∗ = a�a∗ = e,

and similarly

(b∗ �a∗)� (a�b) = b∗ � (a∗ �a)�b = b∗ � e�b = b∗ �b = e.

Thus, by the uniqueness of the inverses proved in part (b), we conclude that b∗ �a∗ =
(a�b)∗.

(d) If a�b = a� c, multiply on the left by the inverse of a to get b = c.
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8.3 Cayley tables
If a group is finite, it can be represented by its operation table. In the case of groups,
this table is more usually called the Cayley table, after Arthur Cayley who pioneered
its use. Here, for example, is the Cayley table of the additive group of Z4.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Notice that, like the solution to a Sudoku puzzle, the Cayley table of a group
contains each symbol exactly once in each row and once in each column (ignoring
row and column labels). Why? Suppose we are looking for the element b in row a.
It occurs in column x if a � x = b. This equation has the unique solution x = a−1 � b,
where a−1 is the inverse of a. A similar argument applies to the columns.

8.4 Units
Let R be a ring with identity element 1. An element u ∈ R is called a unit if there is an
element v ∈ R such that uv = vu = 1. The element v is called the inverse of u, written
u−1. By Proposition 8.4, a unit has a unique inverse.

Here are some properties of units.

Proposition 8.5. Let R be a nontrivial ring with identity.

(a) 0 is not a unit.

(b) 1 is a unit; its inverse is 1.

(c) If u is a unit, then so is u−1; its inverse is u.

(d) If u and v are units, then so is uv; its inverse is v−1u−1.

Proof. (a) Since 0v = 0 for all v ∈ R and 0 6= 1, there is no element v such that 0v = 1.

(b) The equation 1 ·1 = 1 shows that 1 is the inverse of 1.

(c) The equation u−1u = uu−1 = 1, which holds because u−1 is the inverse of u,
also shows that u is the inverse of u−1.
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(d) Suppose that u−1 and v−1 are the inverses of u and v. Then

(uv)(v−1u−1) = u(vv−1)u−1 = u1u−1 = uu−1 = 1,
(v−1u−1)(uv) = v−1(u−1u)v = v−11v = v−1v = 1,

so v−1u−1 is the inverse of uv.

Here are some examples of units in familiar rings.

• In a field, every non-zero element is a unit.

• In Z, the only units are 1 and −1.

• Let F be a field and n a positive integer. An element A of the ring Mn×n(F) is a

unit if and only if the determinant of A is non-zero. In particular,
(

a b
c d

)
is a

unit in M2×2(R) if and only if ad−bc 6= 0; if this holds, then its inverse is

1
ad−bc

(
d −b
−c a

)
.

• Which elements are units in the ring Zm of integers mod m? The next result
gives the answer.

Proposition 8.6. Suppose that m > 1.

(a) An element [a]m of Zm is a unit if and only if gcd(a,m) = 1.

(b) If gcd(a,m)> 1, then there exists b 6≡m 0 such that [a]m[b]m = [0]m.

Proof. Suppose that gcd(a,m) = 1; we show that a is a unit. By Euclid, there exist
integers x and y such that ax+my = 1. This means ax ≡m 1, so that [a]m[x]m = [1]m,
and [a]m is a unit.

Now suppose that gcd(a,m) = d > 1. Then a/d and m/d are integers, and we have

a
(m

d

)
=
(a

d

)
≡m 0,

so [a]m[b]m = [0]m, where b = m/d. Since 0 < b < m, we have [b]m 6= [0]m.
But this equation shows that a cannot be a unit. For, if [x]m[a]m = [1]m, then

[b]m = [1]m[b]m = [x]m[a]m[b]m = [x]m[0]m = [0]m,

a contradiction.
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Example The table shows, for each non-zero element [a]10 of Z10, an element [b]10
such that the product is either 0 or 1. To save space we write a instead of [a]10.

a 1 2 3 4 5 6 7 8 9
ab 1 ·1 = 1 2 ·5 = 0 3 ·7 = 1 4 ·5 = 0 5 ·2 = 0 6 ·5 = 0 7 ·3 = 1 8 ·5 = 0 9 ·9 = 1

Unit? √ × √ × × × √ × √

So the units in Z10 are [1]10, [3]10, [7]10, and [9]10. Their inverses are [1]10, [7]10, [3]10
and [9]10 respectively.

Euler’s function φ(m), sometimes called Euler’s totient function, is defined to be
the number of integers a satisfying 0 ≤ a ≤ m− 1 and gcd(a,m) = 1. Thus φ(m) is
the number of units in Zm.

8.5 The group of units
If R is a ring with identity. we let R× denote the set of units of R, with the operation
of multiplication in R. On account of the following theorem, we name R× the group
of units of R.

Theorem 8.7. R× is a group.

Proof. The associative law in R× follows from the ring axiom (M1). For the remain-
ing laws, closure, identity and inverse, the important thing to check is that the elements
of R provided by the ring axioms themselves lie in R×. This follows from Proposi-
tion 8.5.

Groups of units are a particularly important example of groups; in particular, they
provide our first examples of nonabelian groups. We list some special cases.

• If F is a field, then the group F× of units of F consists of all the non-zero
elements of F . This is called the multiplicative group of F .

• Let F be a field and n a positive integer. The set Mn×n(F) of all n×n matrices
with elements in F is a ring. The group Mn×n(F)× is called the general linear
group of dimension n over F , written GL(n,F). The general linear group is not
abelian if n≥ 2.

We will meet another very important class of groups in the next chapter.
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Remark on notation I have used the symbol � for the group operation in a gen-
eral group, because it has relatively little baggage from previous use. In books, you
will often see the group operation written as multiplication, or for abelian groups as
addition. Here is a table comparing a few different notations.

Notation Operation Identity Inverse
General a�b e a∗

Multiplicative ab or a ·b 1 a−1

Additive a+b 0 −a

In order to specify the notation, instead of saying, “Let G be a group”, we often
say, “Let (G,�) be a group”, or “(G,+)” or whichever symbol we want to use for the
binary operation. The rest of the notation should then be fixed as in the table.

Sometimes the notations get a bit mixed up. For example, even with the general
notation, it is common to use a−1 instead of a∗ for the inverse of a. I will do so from
now on.

8.6 Subgroups
Here is the Cayley table of the group Z×12.

· 1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5

11 11 7 5 1

Consider the elements [1]12 and [5]12; forget the other rows and columns of the
table. We get a small table

· 1 5
1 1 5
5 5 1

Is this a group? Just as for the full table, we can check the axioms (G0), (G2) and (G3)
very easily. What about the associative law? Do we have to check all 2× 2× 2 = 8
cases? No, because these 8 cases are among the 64 cases in the larger group, and we
know that all instances of the associative law hold there. So the small table is a group.
We call it a subgroup of the larger group, since we have chosen some of the elements
which happen to form a group.

Definition 8.8. Let (G,�) be a group, and H a subset of G, that is, a selection of some
of the elements of G. We say that H is subgroup of G if H, with the same operation
(addition in our example) is itself a group.

63



How do we decide if a subset H is a subgroup? It has to satisfy the group axioms.

(G0) We require that, for all h1,h2 ∈ H, we have h1 �h2 ∈ H.

(G1) H should satisfy the associative law; that is, (h1 � h2) � h3 = h1 � (h2 � h3), for
all h1,h2,h3 ∈H. But since this equation holds for any choice of three elements
of G, it is certainly true if the elements belong to H.

(G2) H must contain an identity element. If eH is the identity element of H, then
eH � eH = eH , and the cancellation law in G then implies that eH equals the
identity element of G. So this condition requires that H should contain the
identity of G.

(G3) Each element of H must have an inverse. Again by the uniqueness, this must be
the same as the inverse in G. So the condition is that, for any h ∈ H, its inverse
h−1 belongs to H.

So we get one axiom for free and have three to check. But the amount of work can
be reduced. The next result is called the Subgroup Test.

Proposition 8.9. A non-empty subset H of a group (G,�) is a subgroup if and only if,
for all h1,h2 ∈ H, we have h1 �h−1

2 ∈ H.

Proof. If H is a subgroup and h1,h2 ∈ H, then h−1
2 ∈ H, and so h1 �h−1

2 ∈ H.
Conversely suppose this condition holds. Since H is non-empty, we can choose

some element h ∈ H. Taking h1 = h2 = h, we find that e = h � h−1 ∈ H; so (G2)
holds. Now, for any h ∈ H, we have h−1 = e�h−1 ∈ H; so (G3) holds. Then for any
h1,h2 ∈ H, we have h−1

2 ∈ H, so h1 � h2 = h1 � (h−1
2 )−1 ∈ H; so (G0) holds. As we

saw, we get (G1) for free.

Example Let G= (Z,+), the additive group of Z, and H = 4Z (the set of all integers
which are multiples of 4). Take two elements h1 and h2 of H, say h1 = 4a1 and
h2 = 4a2 for some a1,a2 ∈ Z. Since the group operation is +, the inverse of h2 is−h2,
and we have to check whether h1+(−h2)∈H. The answer is yes, since h1+(−h2) =
4a1−4a2 = 4(a1−a2) ∈ 4Z= H. So 4Z is a subgroup of (Z,+).

8.7 Cosets and Lagrange’s Theorem
In our example above, we saw that 4Z is a subgroup of Z. Now Z can be partitioned
into four congruence classes mod 4, one of which is the subgroup 4Z. We now gener-
alise this to any group and any subgroup.
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Let G be a group and H a subgroup of G. Define a relation ∼ on G by

g1 ∼ g2 if and only if g2 �g−1
1 ∈ H.

We claim that ∼ is an equivalence relation.

reflexive: g1 �g−1
1 = e ∈ H, so g1 ∼ g1.

symmetric: Let g1 ∼ g2, so that h = g2 � g−1
1 ∈ H. Then h−1 = g1 � g−1

2 ∈ H, so
g2 ∼ g1.

transitive: Suppose that g1 ∼ g2 and g2 ∼ g3. Then h = g2 � g−1
1 ∈ H and k = g3 �

g−1
2 ∈ H. Then

k �h = (g3 �g−1
2 )� (g2 �g−1

1 ) = g3 �g−1
1 ∈ H,

so g1 ∼ g3.

Now since we have an equivalence relation on G, the set G is partitioned into
equivalence classes for the relation. These equivalence classes are called cosets of H
in G, and the number of equivalence classes is the index of H in G, written |G : H|.

What do cosets look like?
For any g ∈ G, let

H �g = {h�g : h ∈ H}.

We claim that any coset has this form. Take g ∈ G, and let X be the equivalence class
of ∼ containing g. That is, X = {x ∈ G;g∼ x}.

• Take x ∈ X . Then g∼ x, so x�g−1 ∈H. Let h = x�g−1. Then x = h�g ∈H �g.

• Take an element of H � g, say h � g. Then (h � g) � g−1 = h ∈ H, so g ∼ h � g;
thus h�g ∈ X .

So every equivalence class is of the form H �g. We have shown:

Theorem 8.10. Let H be a subgroup of G. Then the cosets of H in G are the sets of
the form

H �g = {h�g : h ∈ H}

and they form a partition of G.
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Example Let G = Z and H = 4Z. Since the group operation is +, the cosets of H
are the sets H + a for a ∈ G, that is, the congruence classes. There are four of them,
so |G : H|= 4.

Remark. We write the coset as H �g, and call the element g the coset representative.
But any element of the coset can be used as its representative. In the above example,

4Z+1 = 4Z+5 = 4Z−7 = 4Z+100001 = · · ·

If G is finite, the order of G is the number of elements of G. (If G is infinite, we
sometimes say that it has infinite order.) We write the order of G as |G|.

Now the partition into cosets allows us to prove an important result, Lagrange’s
Theorem:

Theorem 8.11. Let G be a finite group, and H a subgroup of G. Then |H| divides |G|.
In fact, |G|= |G : H| · |H|, where |G : H| is the index of H in G.

Proof. We know that G is partitioned into exactly |G : H| cosets of H. If we can show
that each coset has the same number as elements as H does, then the theorem will be
proved.

So let H � g be a coset of H. We define a function f : H → H � g by the rule
that f (h) = h � g. We show that f is one-to-one and onto. Then the conclusion that
|H �g|= |H| will follow.

f is one-to-one: suppose that f (h1) = f (h2), that is, h1 �g = h2 �g. By the Cancel-
lation Law, h1 = h2.

f is onto: take an element x ∈ H �g, say x = h�g. Then x = f (h), as required.
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A The vocabulary of proposition and proof
There are many specialised terms in mathematics used to talk about the nature of
proof, its ingredients, and its results. For reference we discuss some of them here.

Theorem, Proposition, Lemma, Corollary These words all mean the same thing:
a statement which we can prove. We use them for slightly different purposes.

A theorem is an important statement which we can prove. A proposition is like
a theorem but less important. A corollary is a statement which follows easily from
a theorem or proposition. For example, if I have proved this statement, call it state-
ment A:

Let n be an integer. Then n2 is even if and only if n is even.

then statement B

Let n be an integer. Then n2 is odd if and only if n is odd.

follows easily, so I could call statement B a corollary of statement A. Finally, a lemma
is a statement which is proved as a stepping stone to some more important theorem.
Statement A above is used in Pythagoras’ proof of the theorem that

√
2 is irrational,

so in this context I could call it a lemma.
Of course these words are not used very precisely. It is a matter of judgment

whether something is a theorem, proposition, or whatever, and some statements have
traditional names which use these words in an unusual way. For example, there is a
very famous theorem called Fermat’s Last Theorem, which is the following:

Theorem A.1. Let n be an integer bigger than 2. Then there are no positive integers
x,y,z satisfying xn + yn = zn.

This was proved in 1994 by Andrew Wiles, so why do we attribute it to Fermat?

Pierre de Fermat wrote the
statement of this theorem in the
margin of one of his books in 1637.
He said, “I have a truly wonderful
proof of this theorem, but this
margin is too small to contain it.”
No such proof was ever found, and
today we don’t believe he had a
proof; but the name stuck.
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Conjecture The proof of Fermat’s Last Theorem is rather complicated, and I will
not give it here! Note that, for the roughly 350 years between Fermat and Wiles,
“Fermat’s Last Theorem” wasn’t a theorem, since we didn’t have a proof! A statement
that we think is true but we can’t prove is called a conjecture. So we should really have
called it Fermat’s Conjecture.

An example of a conjecture which hasn’t yet been proved is Goldbach’s conjec-
ture:

Every even number greater than 2 is the sum of two prime numbers.

To prove this is probably very difficult. But to disprove it, a single counterexample
(an even number which is not the sum of two primes) would do.

Prove, show, demonstrate These words all mean the same thing. We have dis-
cussed how to give a mathematical proof of a statement. These words all ask you to
do that.

Converse The converse of the statement “A implies B” (or “if A then B”) is the state-
ment “B implies A”. They are not logically equivalent, as we saw when we discussed
“if” and “only if”. You should regard the following conversation as a warning! Alice
is at the Mad Hatter’s Tea Party and the Hatter has just asked her a riddle: ‘Why is a
raven like a writing-desk?’

‘Come, we shall have some fun now!’ thought Alice. ‘I’m glad they’ve
begun asking riddles.—I believe I can guess that,’ she added aloud.

‘Do you mean that you think you can find out the answer to it?’ said the
March Hare.

‘Exactly so,’ said Alice.
‘Then you should say what you mean,’ the March Hare went on.
‘I do,’ Alice hastily replied; ‘at least—at least I mean what I say—that’s the

same thing, you know.’
‘Not the same thing a bit!’ said the Hatter. ‘You might just as well say that

“I see what I eat” is the same thing as “I eat what I see”!’ ‘You might just as well
say,’ added the March Hare, ‘that “I like what I get” is the same thing as “I get
what I like”!’ ‘You might just as well say,’ added the Dormouse, who seemed to
be talking in his sleep, ‘that “I breathe when I sleep” is the same thing as “I sleep
when I breathe”!’

‘It is the same thing with you,’ said the Hatter, and here the conversation
dropped, and the party sat silent for a minute, while Alice thought over all she
could remember about ravens and writing-desks, which wasn’t much.
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Definition To take another example from Lewis Carroll, recall Humpty Dumpty’s
statement: “When I use a word, it means exactly what I want it to mean, neither more
nor less”.

In mathematics, we use a lot of words with very precise meanings, often quite
different from their usual meanings. When we introduce a word which is to have
a special meaning, we have to say precisely what that meaning is to be. Once we
have done so, every time we use the word in future, we are invoking this new precise
meaning.

Usually, the word being defined is written in italics. For example, in Geometry I,
you met the definition

An m×n matrix is an array of numbers set out in m rows and n columns.

From that point, whenever the lecturer uses the word “matrix”, it has this meaning, and
has no relation to the meanings of the word in geology, in medicine, and in science
fiction.

If you are trying to solve a coursework question containing a word whose meaning
you are not sure of, check your notes to see if you can find a definition of that word.
Many students develop the habit of working out mathematical problems using previous
familiar examples as a model. This is a good way to build intuition, but when it comes
to dealing with words that have been given definitions, it can lead you astray. If asked
whether something is (say) a matrix, the right thing to do is not to see whether it is
like other examples of matrices you know, but to turn to the definition!

Define To define is to give a definition, in the sense just discussed. If I ask you to
define some term X, I have asked a more specific question than “what is an X?”. I
want you to tell me the precise mathematical meaning that X was given, in the notes
or the lectures. To return to the example of matrices, a sentence like

A matrix is what you use to write a system of linear equations as a single
vector equation.

is a perfectly fine answer to “what is a matrix”, but it does not define “matrix”.

Axiom Axioms are special parts of certain definitions. They are basic rules which
we assume, and prove other things from. For example, we define a ring to be a set of
elements with two operations, addition and multiplication, satisfying a list of axioms
which we have seen in Section 5.2. Then we prove that any ring has certain properties,
and we can be sure that any system which satisfies the axioms (including systems of
numbers, matrices, polynomials or sets) will have all these properties. In that way, one
theorem can be applied in many different situations.
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The Greek alphabet

When mathematicians run out
of symbols, they often turn to
the Greek alphabet for more.
You don’t need to learn this;
keep it for reference. Apolo-
gies to Greek students: you
may not recognise this, but
it is the Greek alphabet that
mathematicians use!

Name Capital Lowercase
alpha A α

beta B β

gamma Γ γ

delta ∆ δ

epsilon E ε

zeta Z ζ

eta H η

theta Θ θ

iota I ι

kappa K κ

lambda Λ λ

mu M µ

nu N ν

xi Ξ ξ

omicron O o
pi Π π

rho P ρ

sigma Σ σ

tau T τ

upsilon ϒ υ

phi Φ φ or ϕ

chi X χ

psi Ψ ψ

omega Ω ω
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