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Question 1

(a) Find a function f(u) such that the differential equation

f(x+ y) + lnx+
(
ex+y + y2

) dy
dx

= 0

is exact. [5]

(b) For the chosen f(u) write down the corresponding solution in implicit form. [11]

(c) Consider the initial value problem

dy

dx
= f(x, y), f(x, y) =

√
y2 + 9, y(1) = 0 .

Show that the Picard-Lindelöf Theorem guarantees the uniqueness and ex-
istence of the solution to the above problem in a rectangular domain D =
(|x− a| ≤ A, |y − b| ≤ B) in the xy plane, and specify the parameters a and b.
Find the possible range of values of the height B of the domain D given that
the width A of the domain satisfies A < 1/2. [9]

Question 2

(a) Find the general solution of the homogeneous ODE

y′′ + 9y = 0 .

[5]

(b) Find the general solution of the non-homogeneous ODE

y′′ + 9y = sin(2x) .

[11]

(c) Write down the general solution to the first order homogeneous linear ODE

y′ = tan (x) y .

[5]

(d) Solve the initial value problem for the first order linear non-homogeneous ODE

y′ = tan (x) y + 1, y(0) = 2.

[4]
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Question 3 Write down the solution to the following Boundary Value Problem
(BVP) for the second order non-homogeneous differential equation

d2y

dx2
= f(x), y(0) = 0, y′(1) = 0

by using the Green’s function method along the following lines:

(a) Formulate the corresponding left-end initial value problem and find its solution
yL(x). [8]

(b) Formulate the corresponding right-end initial value problem and find its solu-
tion yR(x). [7]

(c) Use yL(x), yR(x) for constructing the Green’s function G(x, s) . [6]

(d) Write down the solution to the BVP in terms of G(x, s) and f(x) and use it
to find the explicit form of the solution for f(x) = x2. [4]

Question 4 Consider a system of two nonlinear first-order ODEs:

ẋ = −x− 3y − 3x3, ẏ =
4

3
x− y − 1

3
x3 (1)

(a) Write down in the matrix form the system obtained by linearization of the
above equations around the point x = y = 0 and find the corresponding eigen-
values and eigenvectors. [8]

(b) Write down general solution of the linear system. Discuss the stability of zero
solution of such a linear system and determine the value x(t→∞). [4]

(c) Find the solution of the linear system corresponding to the initial conditions
x(0) = 2, y(0) = 0. Determine the type of equilibrium for the system and
describe in words the shape of trajectory in the phase plane corresponding to
the specified initial conditions. Determine the tangent vector to the trajectory
at t = 0. [8]

(d) Demonstrate how to use the function V (x, y) = 4
3x

2 + 3y2 to investigate the
stability of the full non-linear system (1). [5]

End of Paper
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Formula Sheet

• Useful integrals: ∫
xa dx =

1

a+ 1
xa+1, ∀a 6= −1∫

1

x
dx = ln |x| for a = −1;

∫
lnx dx = x ln |x| − x∫

cosx dx = sinx,

∫
sinx dx = − cosx,

∫
tanx dx = − ln | cosx|∫

eax cos bx dx =
eax

a2 + b2
(a cos bx+ b sin bx)∫

eax sin bx dx =
eax

a2 + b2
(a sin bx− b cos bx)∫

dx

a2 + x2
=

1

a
arctan

x

a
,

∫
dx√
a2 − x2

= arcsin
x

a∫
dx

x2 − a2
=

1

2a
ln
|x− a|
|x+ a|

,

• Useful trigonometric formulae:

eiθ = cos θ + i sin θ, cos 2x = cos2 x− sin2 x, sin 2x = 2 sinx cosx

sin (A±B) = sinA cosB±cosA sinB, cos(A±B) = cosA cosB∓sinA sinB

• Reminder on ODEs:

y′ = f(ax+ by + c) ⇒ z = ax+ by + c; y′ = f

(
y

x

)
⇒ y = x z

y′ = A(x) y +B(x) is solved by variation of parameters method.

It starts with finding the solution of the corresponding homogeneous equation
y′ = A(x) y, and proceeds through replacing the constant of integration with
a function to be determined.

If the equation P (x, y) +Q(x, y)
dy

dx
= 0 is exact, its solution can be found

in the form F (x, y) = Const. where

P =
∂F

∂x
and Q =

∂F

∂y

• For the initial value problem

dy

dx
= f(x, y), y(a) = b

the Picard-Lindelöf Theorem guarantees the uniqueness and existence of the so-
lution to the above problem in a rectangular domainD = (|x− a| ≤ A, |y − b| ≤ B)
in the xy plane, provided (i) f(x, y) is continuous and therefore bounded in
D and |∂f∂y | is bounded in D ; (ii) the parameters A and B satisfy A < B/M
where M = maxD|f(x, y)|.
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• A particular solution of second-order non-homogeneous ODE with constant
coefficients found by the Variation of Parameters method is given by

yp(x) =
1

(λ1 − λ2)a2

{
eλ1x

∫
f(x)e−λ1xdx− eλ2x

∫
f(x)e−λ2xdx

}
(2)

• If there exists a unique solution y(x) to a non-homogeneous boundary value
problem for ODE L(y) = a2(x)y′′ + a1(x)y′ + a0(x) = f(x) in an interval
x ∈ [x1, x2] with linear B.C.

αy′(x1) + βy(x1) = b1, γy′(x2) + δy(x2) = b2

it can be found by the Green’s function method:

y(x) =

∫ x2

x1
G(x, s) f(s) ds, G(x, s) =

{
A(s) yL(x), x1 ≤ x ≤ s
B(s) yR(x), s ≤ x ≤ x2

where

A(s) =
yR(s)

a2(s)W (s)
, B(s) =

yL(s)

a2(s)W (s)
, W (s) = yL(s)y′R(s)− yR(s)y′L(s)

and yL(x), yR(x) are solutions to the left/right initial value problems:

L(y) = 0, y(x1) = α, y′(x1) = −β; and L(y) = 0, y(x2) = γ, y′(x2) = −δ

• The orbital derivative for a Lyapunov function V (x, y) is defined as:

DfV =
∂V

∂x
ẋ+

∂V

∂y
ẏ
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