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4 Autonomous systems of two first
order ODEs

4.1 General properties of autonomous systems
Definition:
A system of ODEs in normal form

ẏ = f(t,y) , y =

(
y1
y2

)
, f =

(
f1(t, y1, y2)
f2(t, y1, y2)

)
(4.1)

is called autonomous if all functions on the right-hand side of the equation do not depend
explicitly on the variable t, i.e.,

f1(t, y1, y2) = f1(y1, y2) , f2(t, y1, y2) = f2(y1, y2) . (4.2)

A part G of the two-dimensional space R2 described by the coordinates y1, y2, where both
functions f1(y1, y2) and f2(y1, y2) are well-defined, is called the phase space of this system.
We will consider only cases where the phase space is the whole (y1, y2) plane R2.

Furthermore, we will only consider systems where the right-hand sides f1, f2 are contin-
uous and where all partial derivatives ∂fi/∂yj are also continuous everywhere in the phase
space. The Picard-Lindelöf Theorem will then ensure the uniqueness of solutions for any
initial conditions, that is, globally in the whole phase space.

Dynamical systems.

We will think of t as time, and of the system’s dynamics as an evolution in time. However,
it is frequently convenient to consider on equal footing not only an evolution from the initial
conditions towards the “future” (that is, for 0 ≤ t <∞) but also from the initial conditions
towards the “past” (that is, for −∞ < t ≤ 0). Systems like (4.1) are called dynamical
systems.

Trajectories and equilibra.

Every solution of an autonomous system ẏ = f(y) given by

y1 = y1(t) , y2 = y2(t) (4.3)
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describes a curve in the phase space, parametrized by the parameter −∞ < t <∞. These
curves are called trajectories of the dynamical system. In the particular case where the
system of ODEs allows a constant solution such that for any time t we have y1(t) = a1 =
const , y2(t) = a2 = const, the curve degenerates to a single point in the phase space with

the coordinate vector a =

(
a1
a2

)
. Such a point represented by a constant vector y(t) = a

can be a solution of (4.1), (4.2) only if simultaneously the right-hand sides of

f1(a) = 0 , f2(a) = 0

vanish for the same vector a. Such special points are called equilibria, or synonymously
stationary points, singular points and fixed points.

1. Any two trajectories either completely coincide, or do not have any common points.
This is a consequence of the uniqueness of solutions of the initial value problems for
(4.1), (4.2) ensured by the Picard-Lindelöf Theorem: If two different trajectories had
a common point, then using this point as an initial value we would have two different
solutions to the initial value problem, which is impossible. This non-intersection
property in turn implies that:

2. Any solution of (4.1), (4.2) cannot reach an equilibrium point in finite time.
Because if a is an equilibrium point, the constant solution ỹ(t) = a is a (degenerate)
trajectory for all times t. But if y(t) is a solution which does not coincide with a,
according to 1. above the trajectory representing y(t) cannot have a common point
with the one representing ỹ(t), that is, ∀ty(t) 6= a. To be more precise, solutions y(t)
can approach equilibrium points only for t→ ±∞.

Next our focus will be to understand the typical behaviour of solutions to a general pair
of first-order autonomous ODEs (4.1), (4.2). As in this case the phase space is the two-
dimensional plane, (y1, y2), and two autonomous ODEs then takes the form

ẏ1 = f1(y1, y2) , ẏ = f2(y1, y2) . (4.4)

Our analysis will proceed by establishing typical features of the solutions of (4.4) in the
phase space (y1, y2). A special role is played by the equilibria which, as we know already, in
our case are given by the solutions of the pair of equations

f1(y1, y2) = 0 , f2(y1, y2) = 0 . (4.5)

In general, these equations may have several solutions. Our goal will be to investigate typical
trajectories of (4.4) in the vicinity of a given solution y1 = y1c, y2 = y2c of (4.5). Here we
will assume that such a solution is isolated, that is, there exists R > 0 such that inside the
circle (y1 − y1c)

2 + (y2 − y2c)
2 ≤ R2 there are no other solutions of (4.5).

4.2 Linearization of autonomous systems of two first
order ODEs

4.2.1 Linearize a nonlinear ODE system around its equilibrium

When investigating trajectories in the close proximity of an isolated fixed point we can
always assume that y1c = y2c = 0, which is equivalent to placing the origin of the coordinate
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system in the (y1, y2) plane on the chosen equilibrium. This can always be achieved by
transforming into new coordinates (y1, y2) −→ (ỹ1, ỹ2) defined by ỹ1 ≡ y1−y1c , ỹ2 ≡ y2−y2c.
Hence, by assuming for sake of simplicity that the coordinates (y1, y2) are such that there is
a fixed point at (0, 0), we will further assume that the functions f1(y1, y2) and f2(y1, y2) can
be expanded in a Taylor series around the origin. Taking into account f1(0, 0) = f2(0, 0) = 0
and denoting

a11 =
∂f1(y1, y2)

∂x
|0,0 , a12 =

∂f1(y1, y2)

∂y
|0,0 , (4.6)

a21 =
∂f2(y1, y2)

∂x
|0,0 , a22 =

∂f2(y1, y2)

∂y
|0,0 (4.7)

we arrive at the system of two ODEs

ẏ1 = a11y1 + a12y2 + O(y21, y2y1, y
2
2) , ẏ = a21y1 + a22y2 + O(y21, y2y1, y

2
2) , (4.8)

where O(...) stands for all terms of order (...) or higher. We see that by neglecting these
higher-order terms the local behaviour of the trajectories close to the chosen isolated fixed
point is governed by the system of two linear ODEs

ẏ1 = a11y1 + a12y2 , ẏ = a21y1 + a22y2 . (4.9)

They can be rewritten in matrix form as(
ẏ1
ẏ

)
= A

(
y1
y2

)
, A =

(
a11 a12
a21 a22

)
(4.10)

and even more concisely as

ẏ = Ay , y =

(
y1
y2

)
. (4.11)

The above procedure is called the linearization of the system of ODEs around a given
fixed point.
Further progress with the analysis of such systems heavily relies on understanding the
properties of 2 × 2 matrices. We thus proceed with a very brief review in week 9 on this
subject tailored to our goals.
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