Differential Equations Lesson 1 Week 1

Prof. Ginestra Bianconi
School of Mathematical Sciences, Queen Mary University of London

Lectures and Tutorials

- Schedule:
- Lesson 1-2 Wednesday 11:00-13:00 Live Arts Two LT
- Lesson 3 Thursday 17:00-18:00 Live Arts Two LT

> You will be assigned to one of the following three tutorials (check your timetable to know which applies)

- Tutorial 1: Thursday 10:00-11:00 PP2
- Tutorial 2: Thursday 12:00-13:00 PP2
- Tutorial 3: Thursday 16:00-17:00 Graduate Ctr:GC201

Lecture notes

- Lecture note material available on QMPlus:
- Typed in lecture notes
- Handwritten lecture notes

Reading list

- Main reference: Types lecture notes
- Other references:
- J. C. Robinson: An introduction to Ordinary Differential Equations (Cambridge University Press)
- Available from the library! (See link in QM+)

Formative Assessment

- Each week, at the tutorial we will cover
- The formative assignment and the mock quiz for the week, available on the QMPlus page

Assessed courseworks

- You will have two assessed courseworks (quizzes).
- Every assessed coursework is worth 10% of the final marks
- You will have one week to complete assessed courseworks but once you open the quiz you need to complete it within 48 hours
- The 2 assessed courseworks will be posted in weeks 6,11

Final exam

- The final exam will account for 80% of the final mark

Feedback

Feedback on your assessed courseworks:
Personalised feedback

Quiz questions: You will be able to see your scores soon after the submission deadline General feedback

General feedback will be given during the tutorial where we will go over the most challenging questions of the assessed courseworks and the common mistakes.

Support Learning Hour
Thursday 2:00-3:00pm MB521

Online Forum

For any question on the module material that you would like to ask there are two ways to received feedback and answers:

- You can ask the question during the live lectures and tutorials
- You can post the question on the online forum

Participation to the online forum is highly beneficial as it increases the interactions between fellow students.

- The online forum will be monitored twice a week

Outline of the Lesson

- ODEs versus PDEs
- Dependent and independent variables
- ODEs and their order
- What is a solution of a ODE?
- The simplest linear ODE
- Examples of applications

Isaac Newton
 (25 December 1642 - 20 March 1726.)

Driven by the need to understand
the physical word
including gravitation and mechanics
Isaac Newton founded Calculus

Newton groundbreaking role in mathematics and physics

Newton groundbreaking role in mathematics and physics can be summarised by the following two points:

- He wrote the differential equations describing the motion of masses in presence of forces (such as gravitation) valid in classical mechanics
- He founded Calculus for solving the differential equations that he formulated

In this module we will expand your analytical skills
to solve differential equations and to
solve problems coming from several applications

Ordinary differential equations (ODEs)

Ordinary differential equations are equations
satisfied by a function of a single variable
involving the function, its derivatives and its argument

$$
\text { Example: } \frac{d y}{d x}=x^{2}
$$

This equation is solved when we find all the functions $y(x)$ that satisfy it
x indicates the independent variable
y indicates the dependent variable.

Partial differential equations (PDEs)

Ordinary differential equations differs from partial differential equations
Partial differential equations are satisfied by functions of two or more variables and involve the function together with its partial derivatives and its argument

$$
\text { Example: } \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=0 \text { (wave equation) }
$$

This equation is solved when we find all the functions $u(x, t)$ that satisfy it
x, t indicate the two independent variables
u indicates the dependent variable.

In this module we will cover only ODEs

The notation

The independent variable and the dependent variable can be also indicated by other letters:

- Function

Independent variable
x
t
t

Dependent variable

$y(x)$	x	y
$y(t)$	t	y
$x(t)$	t	x

Derivative notation

To indicate the derivative we can use the following notation

Derivative with respect to x

Derivative with respect to t

$$
\begin{array}{cc}
\frac{d y}{d t} \leftrightarrow & \dot{y}(t) \\
\frac{d^{2} y}{d t^{2}} & \leftrightarrow \\
\vdots & \ddot{y}(t) \\
\frac{d^{n} y}{d t^{n}} & \\
\longleftrightarrow & y^{(n)}(t)
\end{array}
$$

Ordinary differential equations

An ordinary differential equation of order n for a function $y(x)$
is an equation of the form

$$
\begin{aligned}
& \mathscr{F}\left(y^{(n)}(x), y^{(n-1)}(x), \ldots, y^{\prime \prime}(x), y^{\prime}(x), y, x\right)=0 \\
& \text { (where the } n-\text { th derivative } y^{(n)}(x) \text { occurs in } \mathscr{F} \text {) }
\end{aligned}
$$

Order of a ODE

The order of an ODE

is the order to the highest derivative present in the equation

Examples:

$$
\begin{array}{ll}
y^{\prime} \sin x-y^{2}+x^{3}=0 & \mathscr{F}\left(y^{\prime}, y, x\right)=0 \\
\left(y^{\prime}\right)^{2}-y^{\prime \prime \prime}+e^{x}=0 & \mathscr{F}\left(y^{\prime \prime \prime}, y^{\prime}, x\right)=0 \\
e^{x} y^{\prime \prime}+\sin y=0 & \mathscr{F}\left(y^{\prime \prime}, y, x\right)=0
\end{array}
$$

1st order ODE

3rd-order ODE

2nd-order ODE

Normal form of an ODE

The normal form of an n-order ODE is an explicit expression of the n-order derivative of the type

$$
y^{(n)}(x)=f\left(y^{(n-1)}, y^{(n-2)} \ldots, y^{\prime \prime}, y^{\prime}, y, x\right)
$$

- Examples: 1st-order ODE in normal form

$$
y^{\prime}=f(x, y)
$$

2nd-order ODE in normal form

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Solution of an ODE

A solution of of a given ODE is a function for which the ODE becomes and identity
Example: The function $y=\bar{y}(x)$ is a solution of the ODE

$$
\begin{gathered}
\frac{d y}{d x}=f(x, y) \\
\text { if } \\
\frac{d \bar{y}(x)}{d x}=f(x, \bar{y}(x))
\end{gathered}
$$

is an identity

You can use other notation for

the independent variable and the dependent variables!

Differential equations and variables

ODE Independent variable Dependent Variable Normal form? Order $\frac{d y}{d t}=y t$
t
y
Yes
1

$$
\begin{array}{lllll}
\ddot{y}=-g & t & y & \text { Yes } \\
\ddot{x}=-\frac{k}{m}\left(x-x_{0}\right) & t & \mathcal{X} & \text { 2 } \\
e^{-x} y^{\prime}=y^{2} & X & y & \text { Yes } & 2
\end{array}
$$

The simplest linear ODE

The simplest (linear) ODE you already know how to solve from Calculus is

$$
\frac{d y}{d x}=f(x)
$$

which has as solution the anti-derivative of $f(x)$

$$
y(x)=F(x)=\int f(x) d x+C
$$

Indeed we have the identity

$$
\frac{d F(x)}{d x}=f(x)
$$

Please refresh your Calculus I and Algebra

by
answering the

Revision questions of pre-request knowledge from previous modules posted in the QM+ page under Week 1

Physics

Velocity and acceleration of one dimensional motion

Function Velocity Acceleration
$x(t) \quad \frac{d x}{d t}, \dot{x} \quad \frac{d^{2} x}{d t^{2}}=\frac{d \dot{x}}{d t}, \ddot{x}$

$y(t) \quad \frac{d y}{d t}, \dot{y} \quad \frac{d^{2} y}{d t^{2}}=\frac{d \dot{y}}{d t}, \ddot{y}$

Newton Law

To solve problem in physics (classical mechanics) Newton formulated the three Newton Laws

For a mass hanging from the ceiling with a spring the Newton 2nd Law
is a ODE that reads

$$
m \ddot{y}=f(\dot{y}, y, t)
$$

where $f(\dot{y}, y, t)$ expresses all the forces acting on the mass:

the gravitational force, the elastic force (due to the spring) and friction

Classical mechanics: the birth of differential equations

At time $\mathrm{t}=0$ you launch a mass vertically from a given height h at a given velocity v_{0}.

- Which is the height of the mass at time t?
- When does this mass reach the floor?
- At which velocity does it reach the floor?

$$
m \ddot{y}=-m g
$$

$$
\begin{gathered}
y(0)=h \\
\dot{y}(0)=v_{0} \\
\hline
\end{gathered}
$$

Financial mathematics: Continuously Varying Interest Rates

Suppose you put x in your bank account at time $t=0$, and the interest is continuously compounded with a rate $r(t)$ that changes in times.

- What is the amount $D(t)$ that you will have in your account at time t ?

$$
\dot{D}(t)=D(t) r(t)
$$

$$
D(0)=x
$$

Modelling epidemic spreading

You want to model a pandemic

- What is the dynamics for a given R_{0} ?
- How many would be the removed individuals (immunised or deceased) at time t ?
- The SIR dynamics involving a given fraction of susceptible S, infected I and removed individuals R

$$
S+I+R=1
$$

$$
\begin{aligned}
& \dot{I}=R_{0} I(1-I-R)-I \\
& \dot{R}=I \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& I(0)=I_{0} \\
& R(0)=R_{0}
\end{aligned}
$$

Climate change equation

- Energy Balance models
- Expresses how the temperature T of the Earth changes in time due to the balance between the radiation absorbed by the Sun S and the radiation emitted by the Earth $e \sigma T^{4}$, where the radiation emitted by Earth depends on the presence of Green House Gases in the atmosphere that change the emissivity e of the Earth.

$$
c \rho \frac{d T}{d t}=(1-a) S-e \sigma T^{4}
$$

This equation can be used to inform us in the implementation of the 2016 Paris Agreement
to keep the Earth's temperature increase below 1.5 Degrees Centigrade

Differential equations are useful to solve

 many applied problems!
Notable mathematicians in differential equations

Katherine Johnson (1918-2020)
) Min \quad Miryam Mirzakhani
(1977-2017)
Field Medal 2014

Karen Keskulla Uhlenbeck (born 1942) Abel Prize 2019

Notable scientists working with Differential equational and Dynamical Systems and applications

Syukuro Manabe Princeton University

Nolini Joshi Sidney University

Artur Avila Cordeiro de Melo University of Zurich

