Main Examination period 2023 - January - Semester A

MTH9000 / MTH9000P: Sample Module

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

For actuarial students only: This module also counts towards IFoA exemptions. For your submission to be eligible, you must submit within the first 3 hours.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: F. Examiner, S. Examiner

This is optional. Here, one should put any special instructions (if any) relating to the exam. Otherwise, do not use this functionality.
For example: In this exam $0 \in \mathbb{N}$. Also, all expressions should be simplified as much as possible.

Question 1 [15 marks].

(a) Give a useful parametrisation of all solutions in positive integers x, y, z to the equation $x^{2}+y^{2}=z^{2}$.
(b) Prove that the equation $x^{4}+y^{4}=z^{2}$ has no solutions in which x, y and z are positive integers.
(c) Classify all quadruples (x, y, z, n) of positive integers such that $n \geq 3$ and the equation $x^{n}+y^{n}=z^{n}$ holds. Justify your answer.

Question 2 [25 marks].

(a) Define what it means for a function to be analytic on some open subset of \mathbb{C}.

Let s be a complex number such that $\Re(s)>1$. Define $\zeta(s)$ to be the number:

$$
\zeta(s):=\sum_{n=1}^{\infty} n^{-s} .
$$

(In all cases, n^{-s} means $\exp (-s \log n)$, with $\log n \in \mathbb{R}$.)
(b) State how to define the analytic continuation of ζ to all of $\mathbb{C} \backslash\{1\}$.
(c) Show that all non-real zeros of this analytic continuation have real part equal to $\frac{1}{2}$.

Question 3 [20 marks].

(a) We consider packings in two dimensions.
(i) Prove that no packing of unit circles in the Euclidean plane has density exceeding $\frac{\pi}{2 \sqrt{3}}$.
(ii) What is the maximum possible density for packing ellipses with semi-minor axis 1 and semi-major axis a into Euclidean space? Justify your answer.
(b) (i) Prove without the assistance of a computer that no packing of unit spheres in \mathbb{R}^{3} has density exceeding $\frac{\pi}{3 \sqrt{2}}$.
(ii) Generalise your result to packing ellipsoids whose semi-axes are a, b and c.

Question 4 [$\mathbf{1 0}$ marks]. Prove that any even integer at least 8 can be written as the sum of two distinct (positive) primes.

Question 5 [30 marks]. State and prove the Classification of Finite Simple Groups. [You must clearly establish the existence of all groups concerned, especially if they are defined by having involution centralisers of a certain type.]

A (hyper-) volume formula

The formula for the (hyper-)volume of an n-dimensional ball of radius r is

$$
\frac{\left(\pi r^{2}\right)^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}
$$

where, for $x>0, \Gamma(x)$ is defined to be the real integral $\int_{0}^{\infty} t^{x-1} \mathrm{e}^{-t} \mathrm{~d} t$.

Some trigonometric identities

$$
\begin{aligned}
\sin ^{2} A+\cos ^{2} A & =1 \\
\tan ^{2} A+1 & =\sec ^{2} A \\
1+\cot ^{2} A & =\operatorname{cosec}^{2} A \\
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B) & =\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\end{aligned}
$$

Some derivatives

In the table below, a, b and c are constants.

$$
\begin{array}{cc}
f(x) & f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}(f(x)) \\
\hline a x^{b} & a b x^{b-1} \\
c f(x) & f^{\prime}(x) \\
f(x) \pm g(x) & f^{\prime}(x) \pm g^{\prime}(x) \\
f(x) g(x) & f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
f(g(x)) & g^{\prime}(x) f^{\prime}(g(x)) \\
\sin x & \cos x \\
\cos x & -\sin x \\
\tan x & \sec ^{2} x \\
\log x & \frac{1}{x}
\end{array}
$$

