Pre-Sessional Math and Statistics

Lecture 1: Simple functions and the basics of present value

Lecturer: Dr. Yu Zheng
School of Economics and Finance
Aim of the Pre-Sessional Math & Statistics Course

• Review key mathematical and statistical concepts and tools

• Show examples of how these tools are used in Economics and Finance

• Ensure a solid foundation for your study in the MSc program
Structure of the Course

• Six lectures in the series
• Each lecture lasts about 90 minutes, recorded in 9-10 segments
• Online quiz offers opportunity for self-tests
• There is no exam at the end
• Lecturer: Dr. Yu Zheng
 • Email: yu.zheng@qmul.ac.uk.
Reference Books

For Mathematics

For Statistics

For Econometrics

Most available as e-books in the Library
Lecture 1: Simple Functions and the Basics of Present Value

• Definition of functions
• Commonly used functions and their applications in economics and finance:
 • Linear and quadratic functions
 • Exponential and logarithmic functions
• Definition of sequences and series
• Present value calculations

Functions

Definition. Given two sets X and Y, a function from X to Y is a rule that associates with each number of X, one and only one number of Y.

Examples of functions: say $X = Y = \mathbb{R} \equiv \{\text{the set of all real numbers}\}$.

- Take any number in X and multiply it by 10
- Take any number in X and square it
- Take any number in X and add 1 to it
Functions

Definition. Given two sets X and Y, a function from X to Y is a rule that associates with each number of X, one and only one number of Y.

The set X is called the domain of the function and the set of numbers in Y associated with the numbers in X is called the range of the function. Denote the rule of association by f, we can write the function as

$$f : X \rightarrow Y$$

or as

$$y = f(x), \quad x \in X.$$

y is often referred to as the dependent variable and x as the independent variable. We also say y is the value of the function f at x.

Functions

Definition. Given two sets X and Y, a function from X to Y is a rule that associates with each number of X, one and only one number of Y.

Examples of functions again: $X = Y = \mathbb{R} \equiv \{\text{the set of all real numbers}\}$

- Take any number in X and multiply it by 10: $f(x) = 10x, x \in \mathbb{R}$
- Take any number in X and square it: $g(x) = x^2, x \in \mathbb{R}$
- Take any number in X and add 1 to it: $h(x) = x + 1, x \in \mathbb{R}$
Functions

Examples of functions again: \(X = Y = \mathbb{R} \equiv \{ \text{the set of all real numbers} \} \).

- Take any number in \(X \) and multiply it by 10: \(f(x) = 10x, x \in \mathbb{R} \).
- Take any number in \(X \) and square it: \(g(x) = x^2, x \in \mathbb{R} \).
- Take any number in \(X \) and add 1 to it: \(h(x) = x + 1, x \in \mathbb{R} \).

What is the domain of \(f(x) \)?

What is the range of \(g(x) \)?

What is the value of the function \(f \) at 2?

What is the value of the function \(g \) at -1?

What is the value of the function \(h \) at 100?
Functions

What is the graph of a function?

Example: How to draw $f(x) = 2x + 1, x \in \mathbb{R}$?

What really happens is that we want to draw a set of ordered pairs $\{(x, y) | y = 2x + 1\}$ in the coordinate system x-y

- Draw a few points, (-1,-1), (0,1), (2,5), in the x-y plane
- Connect the points
Functions

What is the graph of a function?

Example: How to draw \(f(x) = 2x + 1, x \in \mathbb{R} \)?

What really happens is that we want to draw a set of ordered pairs \(\{(x, y) \mid y = 2x + 1\} \) in the coordinate system x-y

• Draw a few points, (-1,-1), (0,1), (2,5), in the x-y plane
• Connect the points.

Refresh your memories of the coordinate system:
Simple Functions: Linear Functions

A **linear** function takes the form

\[y = ax + b, \quad x \in \mathbb{R}. \]

The *parameter* \(a\) is called the **slope** and the *parameter* \(b\) is called the **intercept term** of the linear function.

Note the difference between a parameter and a variable.

Examples: \(y = 2 + 3x\) and \(y = 2 - 3x\). What are the slope and intercept of each of these functions?
Simple Functions: Linear Functions

Example: $y = 2 + 3x$
Simple Functions: Linear Functions

Example: $y = 2 - 3x$
Simple Functions: Linear Functions

\[y = ax + b, \quad x \in \mathbb{R} \]

• For \(a > 0 \), an upward sloping line
• For \(a < 0 \), a downward sloping line
• For \(a = 0 \), a horizontal line

• For \(b > 0 \), the line intercepts the y-axis above the origin
• For \(b < 0 \), the line intercepts the y-axis below the origin
• For \(b = 0 \), the line goes through the origin.
Simple Functions: Quadratic Functions

A quadratic function takes the form
\[y = ax^2 + bx + c, \quad x \in \mathbb{R}, a \neq 0. \]

If the parameter \(a = 0 \), the function becomes a linear function with slope \(b \) and intercept \(c \).

If the parameter \(a > 0 \), the graph of the function is U-shaped.

If the parameter \(a < 0 \), the graph of the function is inverted U-shaped.

Examples: \(y = x^2 + 4x + 3 \) and \(y = -x^2 + 6x - 5 \). Which is U-shaped and which is inverted U-shaped?
Simple Functions: Quadratic Functions

Example: \(y = x^2 + 4x + 3 \)
Simple Functions: Quadratic Functions

Example: $y = -x^2 + 6x - 5$
Simple Functions: Quadratic Functions

\[y = ax^2 + bx + c, \quad x \in \mathbb{R}, a \neq 0 \]

Where does the graph intercepts with the x-axis?

Equivalently, what are the roots of (or solutions to) the quadratic equation

\[ax^2 + bx + c = 0 \]
Simple Functions: Quadratic Functions

A technique called “completing the square”:

\[
\begin{align*}
 a \left(x^2 + \frac{b}{a}x \right) + c &= a \left(x^2 + \frac{b}{a}x + \left(\frac{b}{2a} \right)^2 \right) - a \left(\frac{b}{2a} \right)^2 + c \\
 &= a \left(x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a} = 0 \\
 \Rightarrow \left(x + \frac{b}{2a} \right)^2 &= \frac{b^2 - 4ac}{4a^2} \\
 \Rightarrow x + \frac{b}{2a} &= \pm \frac{\sqrt{b^2 - 4ac}}{2a} \\
 \Rightarrow x &= -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}.
\end{align*}
\]
Simple Functions: Exponential Functions

An **exponential** function takes the form

\[y = a \cdot b^x, \quad x \in \mathbb{R}. \]

The parameter \(b \) is called the **base** of the function. Suppose \(a > 0 \).

If the parameter \(b > 1 \), the function increases in \(x \).

If the parameter \(0 < b < 1 \), the function decreases in \(x \).

Examples: \(y = 5^x \) and \(y = 0.6^x \). Which is increasing and which is decreasing?
Simple Functions: Exponential Functions

Example: $y = 5^x$
Simple Functions: Exponential Functions

Example: \(y = 0.6^x \)
Simple Functions: Exponential Functions

Exponential functions are commonly used to express exponential growth such as interest compounding and depreciation. More on this later.

• You have just deposited £100 in your savings account this month. The monthly interest rate is 0.1%. Assuming no withdrawal, express the month-end balance of your account as a function of month t:
 $$B(t) = 100 \times 1.001^t, \quad t = 1,2,3, \ldots$$

• You have just bought a fax machine valued at £500. The value of the machine depreciates at 20% per year. Express the year-end value of the machine as a function of year t:
 $$D(t) = 500 \times 0.8^t, \quad t = 1,2,3, \ldots$$
Simple Functions: Logarithmic Functions

A logarithmic function takes the form
\[y = \log_b x, \quad x \in \mathbb{R}_+ \equiv \{a \text{ set of all positive numbers}\}, b > 0, b \neq 1. \]

If \(b = e \approx 2.718 \ldots \), then we have the natural logarithm, write \(y = \ln x \).
If \(b = 10 \), then we have the common logarithm, write \(y = \log x \).

A log function is the inverse of the exponential function:
\[y = b^x \Rightarrow x = \log_b y. \]

If the base \(b > 1 \), the function increases in \(x \).
If the base \(0 < b < 1 \), the function decreases in \(x \).

Examples: \(y = \log_3 x \) and \(y = \log_{0.5} x \)
Simple Functions: Logarithmic Functions

Example: $y = \log_3 x$
Simple Functions: Logarithmic Functions

Example: \(y = \log_{0.5} x \).
Simple Functions: Logarithmic Functions

Logarithmic Functions are commonly used to transform economic or financial variables thanks to the following properties:

\[
\log a^b = b \log a \\
\log_a (b \times c) = \log_a b + \log_a c
\]

- Take log of the Gross Domestic Product to spot changes in growth rates
- Take log of asset returns
Simple Functions: Logarithmic Functions

Example. Country A’s GDP growth rate averages at 2% per year from 1950 to 1980 and accelerates to 10% per year from 1981 to 2010.

Figure A: GDP Level (Normalized to 1 in 1950)

Figure B: log GDP (Normalized to 0 in 1950)
Simple Functions: Logarithmic Functions

Example. The stock price of company ABC varies over time as shown in the following table:

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>100</td>
<td>120</td>
<td>180</td>
</tr>
</tbody>
</table>

The log return from time 1 to 2: \(\log(120/100) = 7.92\%\)
The log return from time 2 to 3: \(\log(180/120) = 17.62\%\)
The log return from time 1 to 3: \(\log(180/100) = 25.53\%\)

Note: \(7.92\% + 17.62\% = 25.53\%\)! Time additive
Simple returns don’t have this property: \(20\% + 50\% \neq 80\%.\)
Sequences, Series, and Present-Value Calculations

Definition. A **sequence** is a function whose domain is the positive integers.

Examples.

- \(f(n) = 2n, \ n = 1, 2, 3, 4 \ldots \) or \(2, 4, 6, 8, 10, \ldots \)
- \(f(n) = \frac{1}{n}, \ n = 1, 2, 3, 4 \ldots \) or \(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \)

It is sometimes convenient to denote a sequence by \(a_n = f(n) \)

An important application of sequences in finance is the determination of the **present value** of a sum of money to be received at some time in the future.
Suppose you invest X pounds today at an annual rate of return r. Then at the end of the first year, your investment will generate

$$V = X(1 + r)$$

Then we say the present value of amount V to be received in one year’s time is

$$PV = \frac{V}{1 + r} = X$$

Example. Suppose you will receive £120 at the end of one year and the annual interest rate is 20%. What is the present value of that £120?

$$PV = \frac{\text{£120}}{1 + 20\%} = \text{£100}$$
Sequences, Series, and Present-Value Calculations

More generally, the present value PV_t of amount V to be received t periods from now when the interest rate is r per period and compounding occurs at the end of each period is

$$PV_t = \frac{V}{(1 + r)^t}, \quad t = 1, 2, 3, \ldots$$

- This is a sequence
- As t increases, PV_t decreases. The longer you have to wait, the more you discount future benefit and the lower the PV of the benefit
- We refer to $\frac{1}{1+r}$ as the discount factor
Sequences, Series, and Present-Value Calculations

• What is a period? How frequently are interests compounded within a period?

Suppose a period is a year and the annual interest is 12%. You invest £1000 in the account for two years. Compute the value of your investment after two years in each of the following scenarios.

Scenario A: Annual compounding.

\[V = £1000 \left(1 + \frac{12\%}{1}\right)^2 = £1254.40 \]

Scenario B: Semiannual compounding.

\[V = £1000 \left(1 + \frac{6\%}{2}\right)^4 = £1262.48 \]

Scenario C: Monthly compounding.

\[V = £1000 \left(1 + \frac{1\%}{12}\right)^{24} = £1269.73 \]
Sequences, Series, and Present-Value Calculations

If we compound interest n times a year and the annual interest rate is r, then the value of £P invested for t years is

$$V = P \left(1 + \frac{r}{n}\right)^{nt}$$

If we compound infinitely many times a year, or let $n \to +\infty$, we have the case of **continuous compounding**, and the value of £P invested at interest rate r for t periods is worth

$$V = Pe^{rt}$$

at the end of t periods.

Scenario D: Continuous compounding.

$$V = £1000e^{12\% \times 2} = £1271.25$$
Sequences, Series, and Present-Value Calculations

The present value of £V to be received t years from now is given by the following formulae:

- If the interest rate is r per year and compounding n times per year
 \[
 PV_t = \frac{V}{(1 + r/n)^{nt}}
 \]

- If the interest rate is r per year under continuous compounding
 \[
 PV_t = V e^{-rt}.
 \]
Sequences, Series, and Present-Value Calculations

Definition. If \(a_t, \ t = 1, 2, 3, \ldots \) is a sequence, then \(s_n = \sum_{t=1}^{n} a_t, n = 1, 2, 3, \ldots \), is called a **series**.

A **geometric series** takes the form

\[
s_n = \sum_{t=1}^{n} a \rho^{t-1} = a + a \rho + a \rho^2 + \cdots + a \rho^{n-1} = a \left(\frac{1 - \rho^n}{1 - \rho} \right).
\]

Moreover, for \(0 < \rho < 1 \), we have

\[
\lim_{n \to +\infty} s_n = \frac{a}{1 - \rho}
\]
Sequences, Series, and Present-Value Calculations

The present value of a stream of payments of £V at the end of each year for T years, with the annual interest rate r and annual compounding, is

$$PV_T = \frac{V}{1 + r} + \frac{V}{(1 + r)^2} + \cdots + \frac{V}{(1 + r)^T}$$

$$= \sum_{t=1}^{T} \frac{V}{(1 + r)^t} = \frac{V}{1 + r} \left[1 + \frac{1}{1 + r} + \left(\frac{1}{1 + r}\right)^2 + \cdots + \left(\frac{1}{1 + r}\right)^{T-1} \right]$$

$$= \frac{V}{1 + r} \left[\frac{1 - \left(\frac{1}{1 + r}\right)^T}{1 - \frac{1}{1 + r}} \right]$$
Sequences, Series, and Present-Value Calculations

If we can receive the stream of payments until forever, or $T \rightarrow +\infty$, the present value becomes

$$PV_\infty = \frac{V}{r}.$$

$$\lim_{T \rightarrow +\infty} \frac{V}{1 + r} \left[\frac{1 - \left(\frac{1}{1 + r}\right)^T}{1 - \frac{1}{1 + r}} \right] = \frac{V}{1 + r} \left[\frac{1}{1 - \frac{1}{1 + r}} \right] = \frac{V}{r}.$$
Sequences, Series, and Present-Value Calculations

Example (project evaluation). An investment project requires an immediate costs of £200,000. It generates net revenues of £15,000 per year starting at the end of the first year and continuing forever. The annual interest rate is 9%.

The present value of the benefits of the project is

\[PV = \frac{15,000}{0.09} = 166,666.67 \]

The net present value of the project is the present value of benefits minus the present value of costs:

\[NPV = 166,666.67 - 200,000 < 0 \]
Sequences, Series, and Present-Value Calculations

How do we decide whether a project is worth taking up or not?

• If the NPV of a project is negative, then the project is not worthwhile
• If the NPV of a project is positive, then the project is worth investing in
Sequences, Series, and Present-Value Calculations

Example (project evaluation) cont’d. What if the interest is 7.5% instead?

The NPV of the project is then:

\[
NPV = \frac{15,000}{0.075} - 200,000 = 0.
\]

Break even!

The *internal rate of return* of this project is 7.5%
Sequences, Series, and Present-Value Calculations

Definition. The **internal rate of return** of a project or investment is the rate of interest that equates the present value of benefits and costs.

How do we decide whether a project is worth taking up or not?

- If the market interest rate is higher than the internal rate of return, then the project is not worthwhile.
- If the market interest rate is lower than the internal rate of return, then the project is worth investing in.
Sequences, Series, and Present-Value Calculations

Example (project evaluation) cont’d. An investment project requires an immediate costs of £200,000. It generates net revenues of £15,000 per year starting at the end of the first year and continuing forever. The annual market interest rate is 9%. What is the internal interest rate and is this project worth investing in?

The internal rate of return is

\[
\frac{15,000}{r_{\text{internal}}} = 200,000 \Rightarrow r_{\text{internal}} = 7.5\%.
\]

Since it is lower than the market return of 9%, this project is not worthwhile.