MTHG6101 - Introduction to Machine Learning

Sample exam 2021

Read the following carefully:

This sample paper should take about two hours to solve, pro-
vided you have done prior revision and are ready for
examination in the Module.

This sample paper is provided to be used for practice, at a later
stage in your revision. It is not a suggestion how to study and
it is not to be used as a first step in your revision.

Importantly, this sample paper is not to be used as a guide for
what topics to revise/what topics to exclude. The final exam will
cover anything seen in lectures, labs, practicals and note that
the presence of a topic on this sample paper is not an indication
of the presence of the topic in the final exam. Ditto absence of
a topic in this sample exam.

To do well in the final exam, it is not compulsory nor necessary
that you practice this sample paper. However if you practice with
this sample exam, it should be a honest attempt, meaning to do
this paper in proper exam conditions, answering everything.




1. Do exercise 4(3) of the booklet.

1 Compute the singular value decomposition (use R) and report the
results. (3 marks)

This exercise is about singular value decomposition of the follow-

ing matrix:

-1 0 1 0

3 1 0 1],

-1 0 -1 -1
These are the results of the singular value decomposition of the
matrix.
## $d
## [1] 2.2724982 1.4923587 0.7801395
#i#t
## $u
##t [,1] [,2] (,3]

## [1,] 0.2260912 -0.8460412 0.4828013
## [2,] -0.7154086 0.1921651 0.6717612
## [3,] 0.6611152 0.4972795 0.5618183
##

## $v

#it [,1] [,2] [,3]
## [1,] -0.7052217 0.3624643 -0.4779381
## [2,] -0.3148115 0.1287660 0.8610783
## [3,] -0.1914299 -0.9001326 -0.1012858
## [4,] -0.6057315 -0.2044511 0.1409272

Although not asked in this question, you should always check
what you do and be able to retrieve the original matrix.



round (SS$u¥*%diag (SS$d) %*%t (SS$v) ,5)

## (,11 [,2] [,3] [,4]
# [1,] -1 0 1 0
# [2,] 1 1 0 1
## [3,] -1 o -1 -1
M

## [,11 [,2] [,3] [,4]

## [1,] -1 0 1 0
# [2,] 1 1 0 1
## [3,] -1 o -1 -1

Using the results you just obtained with eigenvalues di,ds, ...
sorted out in decreasing order and corresponding eigenvectors
Ui, Uy, ... and vy, Vs, ..., compute a series of approximations of
rank one using R. These are dyu;v?, dyuyvi + dyugvy, ... as ap-
propriate according to the matrix dimensions. Comment on your
results. (9 marks)



The eigenvalues 2.2725, 1.49236, 0.78014 are already sorted out.
Here we give the resulting matrices only.

## [1] "First term only"

## [,1] (,2] [,3] [,4]
## [1,] -0.36234 -0.16175 -0.09836 -0.31122
## [2,] 1.14652 0.51181 0.31122 0.98478
## [3,] -1.05951 -0.47297 -0.28760 -0.91004
## [1] "With 2 terms"

## [,1] (,2] [,3] [,4]
## [1,] -0.81998 -0.32433 1.03815 -0.05308
## [2,] 1.25047 0.54874 0.05308 0.92614
## [3,] -0.79052 -0.37741 -0.95561 -1.06177
## [1] "With 3 terms"

## (.11 [,2] [,3] [,4]

## [1,] -1 0 1 0

## [2,] 1 1 0 1

## [3,] -1 0 -1 -1

The matrix of this problem has rank 3. The matrix with one term
only is of course an approximation to it but it is quite rough. The
second matrix with two terms is especially interesting as it is close
to the matrix itself and thus it is a low rank approximation to the
matrix. The matrix of the final computation equals the original.

2. Do exercise 8(1) of the booklet.

1 Build explicitly B = ATA and then Az and z'Bz. (4 marks)

This question uses A = ( =1 1) and z = (21, 22)".
This computation is straightforward with the given matrix A. We

1 -1
haweB—(_1 1),

Az = —2; + 25 and

z'Bz = 22 — 2212 + 22.



2 Compute the derivatives £ (Az) and £ (z'Bz). (6 marks)

These derivatives are
S(Az)=Z(—z+2)=(-1 1)=Aand

221 — 2z
9 (,T 9 (.2 2 1 2
5. (2" Bz) = 5-(2{ — 22120 + 23) = ( 921 + 22 ) = 2Bz.

3 Verify that your results coincide with the result given in lectures.
(2 marks)

As indicated above, at the end of each derivative.

3. Do exercise 12 of the booklet. Analyze the centered (not scaled) data,
considering only variables (Sepal.Length, Sepal. Width, Petal.Length).

1 Report the output of prcomp using summary, then comment on it
and interpret the first principal component. (10 marks)

This analysis is performed with a single instruction.

PC<-prcomp(x=iris[,1:3],center = TRUE,scale=!TRUE)
summary (PC)

## Importance of components:

#i# PC1 PC2 PC3
## Standard deviation 1.9212 0.49130 0.24383
## Proportion of Variance 0.9246 0.06047 0.01489
## Cumulative Proportion 0.9246 0.98511 1.00000

The first component is enough to recover 92.464% of the total
variability in the data.

The first principal component has coefficients (0.39, -0.091, 0.916)
for variables (Sepal.Length, Sepal.Width, Petal.Length). Given
the very low weight of the coefficient for Sepal.Width, this first
PC is a weighted average of variable Sepal.Length, Petal.Length,
with variable Petal.Length having the biggest weight.



2 Report the eigenvalues of the singular value decomposition of these
data. (3 marks)

These are 23.4516, 5.9971, 2.9763.

Although the R code is strictly not required, the eigenvalues are
the result of

svd(x=scale(x=iris[,1:3],center=TRUE,scale=!TRUE)) $d

## [1] 23.451585 5.997100 2.976341

3 Explain the relation between the singular eigenvalues of step 2
and the entries labelled Standard deviation of the summary in
step 1. Verify numerically your assertion. (6 marks)

The i-th entry under Standard deviation is the square root of
the eigenvalue \; of the Karhunen-Loeve decomposition of the
variance covariance matrix of the data. The relation between \;
and the singular eigenvalue d; is a result seen in the Module lec-
tures: VA = d;/v/n — 1.

For the numerical verification, recall that for these data n = 150
and see that

23.4516/4/150 — 1 = 23.4516/12.2066 = 1.9212287,
5.9971/4/150 — 1 = 5.9971/12.2066 = 0.4913016 and

2.9763/4/150 — 1 = 2.9763/12.2066 = 0.2438313, which are the
values reported above.

4. This question is concerned with the transept data gilgais from the R
package MASS. You will perform a lasso fit to these data before answer-
ing the questions below. For this analysis, the response variable will
be the superficial pH pHOO, and explanatory variables are e00, e30,
e80, c00, c30, c80. You will use all the data available for these
variables, and use scale to make sure that the data is centered and
scaled. Finally, when invoking the lars function set both parameters
intercept and normalize to FALSE.



1 Which is the variable whose coefficient first shrinks to zero in the
lasso path? Give the value of A at which this occurs. (4 marks)

The variable is ¢80, and this occurs at A = 2.2487.

Note that what is shown below was not asked specifically here,
but this is the fit, table of coefficients and values of \ generated.

library (MASS)
data(gilgais)
lars(x=scale(x=gilgais[,-c(1:3)],center = TRUE,scale=TRUE),
y = scale(x=gilgais[,1],center=TRUE,scale=TRUE),
type = "lasso", intercept = FALSE, normalize = FALSE)->A
round (A$beta,4)

## e00 e30 e80 c00 c30 c80
## 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
## 1 0.0000 0.0000 0.0924 0.0000 0.0000 0.000
## 2 0.0000 0.0966 0.1891 0.0000 0.0000 0.000
## 3 0.0000 0.1638 0.2001 -0.0740 0.0000 0.000
## 4 0.6883 0.1995 0.1899 -0.7839 0.0000 0.000
## 5 1.1289 0.4835 0.1919 -1.2521 -0.2699 0.000
## 6 1.2794 0.5780 0.1823 -1.4077 -0.3884 0.038

## attr(,"scaled:scale")
## [1] 111111

round (A$lambda,4)

## [1] 116.5936 82.9464 25.8163 18.1039 8.9388  2.2487

2 Which is the variable whose coefficient is the last to shrink to zero
in the lasso path? Give the corresponding A. (4 marks)

The variable is €80, and this occurs at A = 116.5936.

3 Compute and report the shrinkage s = s(\) = ||3(\)||1/ maxy [|B(\)|]1
attained at the breakpoints in the lasso path. (8 marks)



The computation of s is simply computing the Manhattan norm
at each point in the path, and then normalizing it with respect to
the norm of the ordinary least squares estimate.

The computation of the norm can be done in a variety of ways.
The first is the simplest, used in lectures.

apply(X = abs(A$beta), MARGIN = 1, FUN = sum)->SS
round(SS,4)

#i# 0 1 2 3 4 5 6
## 0.0000 0.0924 0.2857 0.4379 1.8615 3.3264 3.8736

for(i in 1:nrow(A$beta))
print (dist(rbind (A$betali,],0) ,method="manh") [1])

## [1] O

## [1] 0.09243733
## [1] 0.2856825
## [1] 0.4378502
## [1] 1.86154

## [1] 3.32638

## [1] 3.873632

s<-SS/max (SS)

The values of shrinkage s are 0, 0.0239, 0.0738, 0.113, 0.4806,
0.8587, 1.

Construct and report a table with the following 8 columns: a
column for breakpoints lambda, then 6 columns for coefficients
of variables (e00, €30, €80, c00, c30, c80). The last column
will have shrinkage s, to be given as values in [0,1]. (6 marks)



The table is constructed with cbind and columns renamed.

## LP for lasso path
LP<-cbind(c(A$lambda,0) ,A$beta,s)
colnames (LP) [c(1,8)]<-c("lambda","s")
round (LP,4)

#i lambda e00 e30 e80 c00 c30 c80
## 0 116.5936 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
## 1 82.9464 0.0000 0.0000 0.0924 0.0000 0.0000 0.000
## 2 25.8163 0.0000 0.0966 0.1891 0.0000 0.0000 0.000
## 3 18.1039 0.0000 0.1638 0.2001 -0.0740 0.0000 0.000
## 4  8.9388 0.6883 0.1995 0.1899 -0.7839 0.0000 0.000
## 5 2.2487 1.1289 0.4835 0.1919 -1.2521 -0.2699 0.000
## 6 0.0000 1.2794 0.5780 0.1823 -1.4077 -0.3884 0.038

There is interest in retrieving the lasso estimate BL(A) that has
shrinkage of 50%, i.e. for which s = 0.5. Using coef.lars or
otherwise, retrieve this estimate and check that its Manhattan
norm satisfies the shrinkage requirement. (6 marks)

Hint: Read carefully how to use coef.lars and pick a suitable
value of s. Importantly, note that the value of s can be 0.5 but
this is not the only way to do this.

There are several ways to do this. The simplest is the function
coef .lars with s=0.5 and mode="fraction".

coef.lars(object=A,s=0.5,mode="fraction")->b
round(b,4) ## the coefficient

#i# e00 e30 e80 c00 c30 c80
## 0.7109 0.2141 0.1900 -0.8080 -0.0139 0.0000

sum(abs (b)) /max(SS) ## check the norm

## [1] 0.5

= O O O O O O

.0000
.0239
.0738
.1130
.4806
.8587
.0000



Another is to interpolate to determine at which fractional row
the required norm would be attained. This fractional row is
either approx(x=s[5:6],y=5:6,xout=0.5)$y that is 5.0514; or
approximately 5 + 2/38 = 5.0526316, by noting that the dis-
tance between 0.8587 and 0.4806 is roughly split into 38 parts
as 0.8587 — 0.4806 = 0.3782.

coef.lars(object=A,s=approx(x=s[5:6],y=5:6,xout=0.5)$y)-—>b
round(b,4)

#it e00 e30 e80 c00 c30 c80
## 0.7109 0.2141 0.1900 -0.8080 -0.0139 0.0000

sum(abs (b)) /max (SS)

## [1] 0.5

coef.lars(object=A,s=5+2/38)->b

round(b,4)

## e00 e30 e80 c00 c30 c80

## 0.7115 0.2144 0.1900 -0.8085 -0.0142 0.0000
sum(abs (b)) /max(SS)

## [1] 0.5004701

A third possibility is to interpolate directly the coefficients with-
out using coef.lars. This is using either the exact proportion
of the path approx(x=s[5:6],y=5:6,xout=0.5)$y-5 or the ap-
proximate 2/38 so that

10



p<-1-(approx(x=s[5:6],y=5:6,xout=0.5)$y-5)
A$beta[5,]*p+A$betal6,]*(1-p)->b
round(b,4) ## ezact

## e00 e30 e80 c00 c30 c80
## 0.7109 0.2141 0.1900 -0.8080 -0.0139 0.0000

sum(abs (b)) /max(SS) ## check the norm
## [1] 0.5

p<-1-2/38
A$betal5,]*p+A$betal[6,]*(1-p)->b
round(b,4) ## approzimate

#it e00 e30 e80 c00 c30 c80
## 0.7115 0.2144 0.1900 -0.8085 -0.0142 0.0000

sum(abs (b)) /max(SS) ## check the norm

## [1] 0.5004701

5. A logistic classifier is to be evaluated. To this end, the classifier was
trained to produce the trained model termed M1. Using the trained
model, 12 fresh observations were used to produce the following table
of logistic predicted probabilities and true new observations Ytrue.

#it Predicted Prob Ytrue

## 6 0.7901 1
## 9 0.5903 0
## 13 0.3554 0
## 2 0.9312 1
## 17 0.1001 0
## 4 0.7901 1
## 1 0.9625 1
## 21 0.0408 0
## 10 0.5113 1
## 15 0.1743 1

11



## 18 0.1001 0
## 12 0.3554 0

1 Using the new data and the canonical threshold 0.5, compute and
report the confusion matrix. (12 marks)

The probabilities are first thresholded into 0/1 values 1, 1, 0, 1,
0,1,1,0,1,0,0, 0. These predictions ”Yhat” are then compared
with fresh observations.

H## Prob Yhat Ytrue
## TP 0.7901 1 1
## FP 0.5903 1 0
## TN 0.3554 0 0
## TP 0.9312 1 1
## TN 0.1001 0 0
## TP 0.7901 1 1
## TP 0.9625 1 1
## TN 0.0408 0 0
## TP 0.5113 1 1
## FN 0.1743 0 1
## TN 0.1001 0 0
## TN 0.3554 0 0

We summarize these data into the confusion matrix.
#it 0
## 0 5
## 1 1

a -

2 Compute and report the performance measures TPR and FPR.
Briefly comment on these. (4 marks)

The quantities required are
TPR=5/6 = 0.8333 and FPR=1/6 = 0.1667.

12



The classifier is quite a good one, with high TPR value and rel-
atively low FPR. It is far from being random classifier with a
distance to the ideal classifier of 0.2357.

The following plot is the ROC curve for model M1. A table of Sensitiv-
ities and Specificities is also given.

1.0

0.8

Sensitivity
04 0.6

0.2

I I I I I I
10 08 06 04 02 00

Specificity

##  Specificities Sensitivities

#Hit 0.0000 1.0000
#Hit 0.1667 1.0000
#Hit 0.5000 1.0000
#it 0.5000 0.8333
#i#t 0.8333 0.8333
#Hit 0.8333 0.6667
#Hit 1.0000 0.6667
#Hit 1.0000 0.3333



1.0000 0.1667
1.0000 0.0000

3 Use the given information to compute AUC for M1 and briefly
interpret it. (7 marks)

The AUC is computed as a sum of areas of rectangles. Perhaps the
simplest approach starts from the right, using vertical rectangles.
The rectangles have areas 1 x 0.5 = 0.5; 0.8333 x (0.8333 — 0.5) =
0.2778 and (1—0.8333) x0.6667 = 0.1111 and adding these figures
we achieve

AUC=0.5+0.2778 + 0.1111 = 0.8889.
This is a good classifier, reasonably close to the ideal.

A different computation uses horizontal rectangles, starting from
the bottom with areas 0.6667 x 1 = 0.6667; (0.8333 — 0.6667) X
0.8333 = 0.1389 and (1 — 0.8333) x 0.5 = 0.0833 and adding to
achieve AUC= 0.6667 + 0.1389 + 0.0833 = 0.8889.

4 Briefly explain why does the given table of Sensitivities and Speci-
ficities contains both entries (0, 1) and (1, 0) in its extremes. What
do these entries mean? (6 marks)

The entry (0,1) corresponds to a liberal classifier with all fresh
observations classified as positives.

The entry (1,0) is for a conservative classifier when all the ob-
servations are classified as negatives.

Both extremes can be achieved with M1 by simply using different
thresholds; the former with low threshold and the latter with high
threshold.
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YOU CAN PREVIEW THIS QUIZ, BUT IF THIS WERE A REAL ATTEMPT, YOU WOULD BE BLOCKED BECAUSE:

This quizis not currently available

QUESTION 1

Not yet answered Marked out of 20.00

A centered dataset with n = 85 observations and p = 6 variables was analysed to reduce its dimensionality. As part of Principal Component Analysis, the following variance-covariance matrix X was

generated
399.019  49.66
49.66  38.529

—1.793 —6.952
1.7 1733
8.333  2.409

16.583  7.873

—1.793
—6.952
36.051
12.142
—4.986

2.841

1.7 8333
1733  2.409
12.142 —4.986
37.132 —4.093
—4.093  41.277
—0.04 -3.757

16.583
7.873
2.841

—0.04
—3.757
45.062

A) Compute and write the numerical value of the eigenvalue Aq of 5. This eigenvalue is located in the position (4, 4) of the matrix A and is simultaneously the sample variance of the score PC4:

B) Compute and write the percentage of total variability explained by the Principal component PC4. The number you write should be between 0 and 100 and you should include decimals in your

answer.

C) As seen in lectures, the eigenvalue A4 is related to dy, one singular eigenvalue of the data matrix X. Compute and write the value of dy.

D) A threshold of total variability explained has been set at 80\%. How many principal components must you select? Write your answer.

QUESTION 2

Consider the following data set with n = 9 observations and p = 4 variables. The data set is given next
Vi V2 V3

S Qb QW e

19 1
5.2 2
13 5

42 2

3 31

3.2

.2 4.2

19

19

as well as the distance matrix using the “Euclidean” metric. The symbol z in the matrix below is to be calculated later.

A B C

0 3.375 4.174
3.375 0 5.205
4174 5205 0
2.322 4.628 4.298
4.7 569 =z
4272 4.93 3.848
3.09 1.581 4.021
4.091 5.606 4.95
4.027 3.419 5.365

S QMmO QD

A) In the distance matrix there is a missing distance . Compute its value and write it.

D
2.322
4.628
4.298
0

5.4
4.207
4.602
4.27
4.965

E
4.7
5.69
z

5.4

0
2.186
5.113
1.769
3.012

F
4.272
4.93
3.848
4.207
2.186
0
4.589
1.977
2.766

G
3.09
1.581
4.021
4.602
5.113
4.589
0
5.356
3.626

H
4.091
5.606
4.95
4.27
1.769
1.977
5.356
0
3.053

4.027
3.419
5.365
4.965
3.012
2.766
3.626
3.053

B) Consider two arbitrary clusters GH and ABCDEFI. Compute and write the dissimilarity between these clusters under “average” linkage.

C) Using the above data X, the R command K< -kmeans (x=X, centers=3) was run, with the following output

> KM$cluster

[1]1 2, 1, 2, 2, 3, 3, 1, 3, 3

Not yet answered Marked out of 20.00

There is interest in determining the center of the cluster identified with the label 1. By computing this center manually or otherwise, identify which of the following is the correct centroid of this

cluster: B

D) still using the above data X, the R command pam(x=x, k=3)->PMwas run, with the following output:

> PM$id.med
[1]1, 7,6

Identify correctly the medoids yielded by this cluster analysis.
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termed v1, 2 and 3.

The following data are the results of a classification analysis. The outputincludes the validation output vtrue and predicted classifications obtained with three trained classification algorithms

Ytrue Y1 Y2 Y3
1 1 1 0 0
2 1 1 0 1
3 1 1 0 0
4 0 0 1 0
5 il 1 0 il
6 1 1 0 1
7 0 0 1 0
8 1 1 0 0
9 0 0 1 l:
10 il 1 0 0
11 0 0 1 0
12 0 0 1 0
13 0 0 1 1
14 0 0 1 0

https://qmplus.qmul.ac.uk/mod/quiz/attempt.php?attempt=2020027&cmid=1737291

RecentModules v Q. A Qi ERt?]

Analyze the performance of the classifier v1. To this end and using the given data, compute the usual figures TN, FP, FN and TP for the confusion matrix as well as the performance measures TPR and

FPR. Report the figures you have obtained and briefly comment on the performance of this classifier.

® T~ Fv M| @~ B I 4 = E %S ! @ # U & x x z B8 I
= © & O wr
QUESTION 4 Not yet answered Marked out of 20.00
The following table contains output from a lasso fit to a linear model with d = 5 variables and . = 50 observations. Starting from the left, the columns are A, and 31, . . ., B, i.e. each row has Aand
the transposed column vector ().
0.00000 1.20706 —0.66487 0.46392 0.19746 —0.38526
6.18304 1.05715 —0.50740 0.27952 0.00000 —0.17280
12.48795 0.91734 —0.36985 0.11063 0.00000  0.00000
16.89171 0.82829 —0.28890 0.00000 0.00000  0.00000
33.1002 0.53551  0.00000 0.00000 0.00000  0.00000
59.28000 0.00000  0.00000 0.00000 0.00000  0.00000

For each of the required computations below, briefly report your procedure and the required quantity.

a) For each row in the table, compute s, the proportion of shrinkage defined as s = s(A) = ||8(\)||,/ maxx | B(N)|,-

b) Consider X' = 25.040865. Note that X' is the intermediate value between A = 16.89171 and A = 33.19002 of the 4th and 5th rows above. Using this value of ', compute and report the shrunk

estimator B(X).
¢) Give the proportion of shrinkage s(’) for the shrunk estimator B(X').

X T Ry A4y Qv B I 4~

= @ =] <S> & (0] HP
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Given a data set x, the following R commands have been run:

1ibr,

y(cluster);

) ->AG;

ans (x=X, centers=K) - >KM

Match the following objects with what you expect the & output to be.

AG$height

Choose... s
AG$order Choose... ®
KM$cluster Choose... =
KM$betueenss Choose... ol
KM$tot.withinss Choose... *
KM$totss Choose... 4
KM$uwithinss Choose... 2

QUESTION 6 Notyetanswered Marked out of 5.00

Examine carefully the following lines of = code.

irs(S$u\¥*\%diag(5$d))

Briefly explain what the code is about, and what each line of code is doing. If there is output, say what would the output be.

X 24 od v/ ov Bl I =E[E||% S| ||| UflS]| x| | =

= z = I
. © I B B # O P
QUESTION 7 Not yetanswered Marked out of 5.00
In clustering
Select one:

it is not possible to use cross-validation to select a good number of clusters.

a.
O b. insome cases we can validate with data to determine number of clusters.

the objective s to reduce dimensionality of the data.

D d. itis possible to use cross-validation to select a good number of clusters.
QUESTION 8 Not yet answered Marked out of 5.00

Consider that you have performed Principal Component Analysis of a centered and unscaled data set, that i, the variance-covariance matrix to be analysed is not equal to the correlation matrix. To
do the PCA for the same set, but now centered and scaled,

Select one:

O a. reuse the eigenvalues, with the only change is to rescale them to add to the number of components. The eigenvectors are the same.

b. itis not possible to reuse eigenvalues nor eigenvectors.

in some selected instances we can reuse eigenvalues and eigenvectors of the analysis of centered and unscaled data.
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