Please submit your work by 11am, the 15 th of April (QMplus).
A1. (1) By the division algorithm for polynomials, every polynomial in $\mathbb{F}_{2}[X]$, when divided by $X^{2}+X+[1]$, has a unique remainder of the form either [0], $[1], X$ or $X+[1]$. Analogous to the way representative are chosen for \mathbb{Z}_{p}, these four polynomials of degree ≤ 1 naturally define the representatives with respect to \mathcal{R} and therefore $|F|=4$.
(2) Strictly speaking, it makes a key exercise to check the addition and multiplication are welldefined but this is not necessary. The content of this question is that it is rather straightforward to observe almost all field axioms follow from the ring axioms for $\mathbb{F}_{2}[X]$, except in finding the multiplicative inverse of an element in F - the addition inverse of $\{f\}$ is $\{-f\}$ but it does not make sense to say the multiplicative inverse of $\{f\}$ is $\left\{f^{-1}\right\}$ since f^{-1} does not make sense as an element of $\mathbb{F}_{2}[X]$.

We firstly prove that $(F,+)$ is an abelian group. To this end, we check all the group axioms.
(G0) Since $f+g \in \mathbb{F}_{2}[X]$ (by $(\mathrm{R}+0)$ for the ring $\left.\mathbb{F}_{2}[X]\right),\{f\}+\{g\}=\{f+g\}$ defines an element of F.
(G1) Since $(f+g)+\gamma=f+(g+\gamma)$ (by $(\mathrm{R}+1)$ for $\mathbb{F}_{2}[X]$), $(\{f\}+\{g\})+\{\gamma\}=\{(f+g)\}+\{\gamma\}=\{(f+g)+\gamma\}=\{f+(g+\gamma)\}=\{f\}+\{g+\gamma\}=\{f\}+(\{g\}+\{\gamma\})$.
(G2) The equivalence class $\{[0]\}$ is the identity element of F with respect to + . Indeed,

$$
\{f\}+\{[0]\}=\{f+[0]\}=\{f\}=\{[0]+f\}=\{[0]\}+\{f\}
$$

by $(\mathrm{R}+2)$ for $\mathbb{F}_{2}[X]$ (in which the polynomial $[0]$ is the identity element).
(G3) The inverse of $\{f\}$ is $\{-f\}$. Indeed,

$$
\{f\}+\{-f\}=\{f+(-f)\}=\{[0]\}=\{(-f)+f\}=\{-f\}+\{f\}
$$

by ($\mathrm{R}+3$). In fact, since $-f=f$ in $\mathbb{F}_{2}[X]$, the inverse of $\{f\}$ is $\{f\}$ itself!
(G4) Since $\mathbb{F}_{2}[X]$ is commutative,

$$
\{f\}+\{g\}=\{f+g\}=\{g+f\}=\{g\}+\{f\}
$$

holds.
Secondly we prove that $(F-\{[0]\}, \times)$ is an abelian group.
(G0) This follows from $(\mathrm{R} \times 0)$ for $\mathbb{F}_{2}[X]$. Alternatively, we may spell out the multiplication table:

\times	$\{[0]\}$	$\{[1]\}$	$\{X\}$	$\{X+[1]\}$
$\{[0]\}$	$\{[0]\}$	$\{[0]\}$	$\{[0]\}$	$\{[0]\}$
$\{[1]\}$	$\{[0]\}$	$\{[1]\}$	$\{X\}$	$\{X+[1]\}$
$\{X\}$	$\{[0]\}$	$\{X\}$	$\{X+[1]\}$	$\{[1]\}$
$\{X+[1]\}$	$\{[0]\}$	$\{X+[1]\}$	$\{[1]\}$	$\{X\}$

which shows (G4) that $F-\{[0\}$ is commutative with respect to \times.
(G1) This follows from $(\mathrm{R} \times 1)$ for $\left(\mathbb{F}_{2}[X],+, \times\right)$.
(G2) The equivalence class $\{[1]\}$ is the identity element of F with respect to \times. Indeed,

$$
\{f\}\{[1]\}=\{f[1]\}=\{f\}=\{[1] f\}=\{[1]\}\{f\}
$$

since the $\mathbb{F}_{2}[X]$ is a ring with (multiplicative) identity $[1]$.
(G3) This is the heart of the problem. One can not simply say the inverse of $\{f\}$ is $\left\{f^{-1}\right\}$ since ' f^{-1} ' does not make sense in $\mathbb{F}_{2}[X]$! It forces one to calculate the inverse only 'up to $X^{2}+X+[1]$ '! The multiplication table above shows that the inverse of [1] is [1] itself, the inverse of $\{X\}$ is $\{X+[1]\}$ and the inverse of $\{X+[1]\}$ is, of course, $\{X\}$.

Finally, $\{[0]\}$ is evidently not equal to $\{[1]\}$ as $[1]-[0]=[1]$ can not be divided by $X^{2}+X+[1]$.
A2. I just want students to look back on what they have learned and internalise a proof or two.
Marking Scheme. Q1. (1) +1 for simply writing down representatives correctly, +2 for justification and +1 for computing $|F|$. (2) +4 for a proof (+2 for finding the multiplicative inverse of $\{f\}$ generally). Q2. (1) +1 for explanation (2) +1 for a correct proof.

