Please submit your work by 11am, the 15th of April (QMplus).

- **A1**. (1) By the division algorithm for polynomials, every polynomial in $\mathbb{F}_2[X]$, when divided by $X^2 + X + [1]$, has a unique remainder of the form either [0], [1], X or X + [1]. Analogous to the way representative are chosen for \mathbb{Z}_p , these four polynomials of degree ≤ 1 naturally define the representatives with respect to \mathcal{R} and therefore |F| = 4.
- (2) Strictly speaking, it makes a key exercise to check the addition and multiplication are well-defined but this is not necessary. The content of this question is that it is rather straightforward to observe almost all field axioms follow from the ring axioms for $\mathbb{F}_2[X]$, except in finding the multiplicative inverse of an element in F- the addition inverse of $\{f\}$ is $\{-f\}$ but it does not make sense to say the multiplicative inverse of $\{f\}$ is $\{f^{-1}\}$ since f^{-1} does not make sense as an element of $\mathbb{F}_2[X]$.

We firstly prove that (F, +) is an abelian group. To this end, we check all the group axioms.

- (G0) Since $f+g\in \mathbb{F}_2[X]$ (by (R+0) for the ring $\mathbb{F}_2[X]$), $\{f\}+\{g\}=\{f+g\}$ defines an element of F.
 - (G1) Since $(f+g) + \gamma = f + (g+\gamma)$ (by (R+1) for $\mathbb{F}_2[X]$),

$$(\{f\}+\{g\})+\{\gamma\}=\{(f+g)\}+\{\gamma\}=\{(f+g)+\gamma\}=\{f+(g+\gamma)\}=\{f\}+\{g+\gamma\}=\{f\}+(\{g\}+\{\gamma\}).$$

(G2) The equivalence class $\{[0]\}$ is the identity element of F with respect to +. Indeed,

$${f} + {[0]} = {f + [0]} = {f} = {[0] + f} = {[0]} + {f}$$

by (R+2) for $\mathbb{F}_2[X]$ (in which the polynomial [0] is the identity element).

(G3) The inverse of $\{f\}$ is $\{-f\}$. Indeed,

$${f} + {-f} = {f + (-f)} = {[0]} = {(-f) + f} = {-f} + {f}$$

by (R+3). In fact, since -f = f in $\mathbb{F}_2[X]$, the inverse of $\{f\}$ is $\{f\}$ itself! (G4) Since $\mathbb{F}_2[X]$ is commutative,

$${f} + {g} = {f + g} = {g + f} = {g} + {f}$$

holds.

Secondly we prove that $(F - \{[0]\}, \times)$ is an abelian group.

(G0) This follows from (R×0) for $\mathbb{F}_2[X]$. Alternatively, we may spell out the multiplication table:

×	$ \{[0]\} $	$\{[1]\}$	$\{X\}$	${X + [1]}$
{[0]}	{[0]}	{[0]}	{[0]}	{[0]}
$\{[1]\}$	{[0]}	$\{[1]\}$	$\{X\}$	${X + [1]}$
$\{X\}$	{[0]}	$\{X\}$	${X + [1]}$	$\{[1]\}$
${X + [1]}$	{[0]}	$\{X + [1]\}$	$\{[1]\}$	$\{X\}$

which shows (G4) that $F - \{[0]\}$ is commutative with respect to \times .

- (G1) This follows from (R×1) for $(\mathbb{F}_2[X], +, \times)$.
- (G2) The equivalence class $\{[1]\}$ is the identity element of F with respect to \times . Indeed,

$${f}{[1]} = {f[1]} = {f} = {[1]}{f}$$

since the $\mathbb{F}_2[X]$ is a ring with (multiplicative) identity [1].

(G3) This is the heart of the problem. One can not simply say the inverse of $\{f\}$ is $\{f^{-1}\}$ since ' f^{-1} ' does not make sense in $\mathbb{F}_2[X]$! It forces one to calculate the inverse only 'up to $X^2 + X + [1]$ '! The multiplication table above shows that the inverse of [1] is [1] itself, the inverse of [X] is [X+[1]] and the inverse of [X+[1]] is, of course, [X].

Finally, $\{[0]\}$ is evidently not equal to $\{[1]\}$ as [1]-[0]=[1] can not be divided by $X^2+X+[1]$.

A2. I just want students to look back on what they have learned and internalise a proof or two.

Marking Scheme. Q1. (1) +1 for simply writing down representatives correctly, +2 for justification and +1 for computing |F|. (2) +4 for a proof (+2 for finding the multiplicative inverse of $\{f\}$ generally). Q2. (1) +1 for explanation (2) +1 for a correct proof.