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Question 1 [25 marks]. ( Unseen, similar Questions)

(a) ŷ = β̂0 + β̂1x = 429.048 + 18.244x. [2]

(b) For β̂1, with ŝe(β1) and n = 12, a 95% confidence interval is given by [3]

β̂1 ± t.025,12−2 ŝe(β1) =
[
β̂1 + t0.025,10 ŝe(β1), β̂1 − t0.025,10 ŝe(β1)

]

(c) For β̂1 = 18.244, ŝe(β1) = 5.643, n = 12, a 95% confidence interval is given by [4]

18.244± t.025,10(5.643) = 18.244± (2.22814)(5.643) =
[
5.6706, 30.82

]

(d) [5]

Source of Variation DF Sum Square Mean Square F Value
Regression 1 SSR =16059.8 MSR = 16058.9

1
= 16058.9

Residual 12-2 = 10 SSE= 15366 MSE= 15366
(10)

= 1536.6 F = 10.451

(i) The null hypothesis is that there is no increase in mean sales from increasing
the amount of shelf space. So it will be H0 : β1 = 0, HA : β1 ̸= 0. [4]

(ii) Test Statistics: F= 10.451, for α = .01 and F1
10(0.01) = 10.044. [3]

(iii) As F> F1
10(0.01), we will reject the null hypothesis and conclude that β1 ̸= 0.

There is a significant effect on mean weekly sales when we increase the shelf
space. [4]

Question 2 [15 marks].

(a) Viewing at R outputs, the fitted linear regression model is
ŷ = −1298.282 + 61.127x. [1]

The R2 of the model is 92.77%, which shows that linear fit of the model explains
much of the variation. [2]

(b) Figures show the plots of the standardized residuals versus the data (left) and the
standardized residuals versus the fitted values (right). [1]
A random scatter in standardized residualsl vs x and vs fits plots suggests that
the assumption of equal variances holds. [4]
A funnel shape suggests the variance is increasing with the mean. In particular,
we have that the plot has a funnel shape or more a trumpet shape in this case. [1]

(c) We see outliers in the Q-Q plot, which is an indication that normality assumption
of errors is violated. This is further confirmed by Shapiro-Wilk test, where
p-values are less than 0.05. [2]

In fact, a small p value means that the assumption of normality is not supported
by the data. [1]
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(d) We have seen that Shapiro-Wilk test have a small p-value, which implies that the
assumption of normaility is not supported by data, also the increasing variance
suggests that we should transform the dependent variable to log y or

√
y, for

example. [3]

➞ Queen Mary University of London (2021) Continue to next page

MTH5120 (2022)

Queen Mary University of London (2022)



MTH5120 (2021) Page 4

Question 3 [20 marks].

(a) Let µ̂ and σ̂2 be the maximum likelihood estimates for µ and σ2. The probability
density function of Xi is given by

f(xi;µ, σ) =
1√
2πσ2

e−
1

2σ2 (xi−µ)2

for −∞ < µ < ∞, 0 < σ2 < ∞.
Given any sample data set x1, x2, , ..., xn, we can now write down the likelyhood
function, which is given by:

L(µ, σ2) =
n∏

i=1

f(xi, µ, σ
2) = (σ2)−

n
2 (2π)−

n
2 e−

1
2σ2

∑n
i=1(xi−µ)2

[5]
By applying log on both sides we get

logL(µ, σ2) = −n

2
log(σ2)− n

2
log(2π)− 1

2σ2

n∑

i=1

(xi − µ)2.

Differentiating with respect to µ and equating to 0, we will get [2]∑n

i=1 xi − nµ̂ = 0, this gives us

µ̂ =

∑n

i=1 xi

n
.

Differentiating with respect to σ2 and equating to 0, we will get [3]

−n

2

1

σ̂2
+

∑n

i=1(xi − µ̂)2

2(σ̂2)
2 = 0

n∑

i=1

(xi − µ̂)2 = nσ̂2

σ̂2 =

∑n

i=1(xi − µ̂)2

n
.

(b) Let Y1, Y2 · · ·Yn are independent, normal random variables with

Yi ∼ N(β0 + β1Xi, σ
2).

The conditional probability density function of Yi for each xi is given by

p(yi; β0, β1, σ
2) =

1√
2πσ2

e−
{yi−(β0+β1xi)

2}

2σ2 .

Given any sample data set (x1, y1), (x2, y2), · · · (xn, yn), we can now write down the
probability density, seeing that β0, β1 and σ2 are unknown.

L(β0, β1, σ
2) = log

n∏

i=1

p(yi; β0, β1, σ
2)

[4]
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=
n∑

i=1

log p(yi|xi; β0, β1, σ
2)

= −n

2
log 2π − n

2
log(σ2)− 1

2σ2

n∑

i=1

(yi − (β0 + β1xi))
2.

Differentiating with respect to β0 and equating to zero we will have [2]

β̂0 = y − β̂1x.

Differentiating with respect to β1 and equating to zero we will have

β̂1 =

∑n

i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
=

Sxy

S2
x

.

[2]
Differentiating with respect to σ2 and equating to zero we will have

− n

2σ̂2
+

∑n

i=1(yi − (β̂0 + β̂1xi))
2

2(σ̂2)2
= 0.

By simplifying the expressions we will have [2]

nσ̂2 =
n∑

i=1

(yi − (β̂0 + β̂1xi)
2

σ̂2 =
1

n

n∑

i=1

(yi − (β̂0 + β̂1xi)
2.
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Question 4 [25 marks].

(a) One starts with the null model, then one tries adding variables and adds the
variable which has the smallest AIC or BIC. [2]
For AIC

AIC = 2k − 2l, BIC = 2(log(n))− 2l

where l is the value of the logarithmic likelihood function of the constructed model, k is
the number of parameters used (estimated), and n is the sample size that the model
was built on. [2]
(b) BIC imposes a greater penalty on increasing the number of parameters compared
to AIC,therefore the second model in the output corresponds to BIC. [5]
(c)

mpg = β0 + ε

[1]
(d) In the step function, k=2 means that AIC is used. We have covered this in the
lectures. [3]
(e) The statistician has employed backwards elimination procedure. Backward
elimination starts with the full model, deleting the variable (if any) whose loss gives the
minimal information criterion value, and repeating until nothing reduces the
information criterion. [6]
(f) Multicollinearity is the presence of a linear relationship between explanatory
variables. Multicollinearity is problematic because the mathematical regression model
contains redundant variables. The main problem is that multicollinearity leads to
unstable parameter estimates, which makes it very difficult to assess the influence of
independent variables on dependent variables. [4]
(g) From the R output we see that there is no multicollinearity because vif is less than
5. [2]

Question 5 [15 marks].
(a) Due to the fact that the p - value is less than 0.05, we reject the null hypothesis,
which means that we should include the extra parameters in the model. [2]
(b) One can build 23 = 8 models. [2]
(c)(i) In the first model, male earns 329.56 less than female when controlling for age. [2]
In the second model, Males are estimated to make exp(−0.321) as much as female on
average, while controlling for age. [2]
(c)(ii) It would not be correct to say that the second model is preferred over the first
one because two models are on different scale. [3]
(c)(iii) Model (3) is better than Model (2) because R2 is higher and σ2 is lower. [4]

End of Paper.
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