MTH6158 Ring Theory: Guide to Coursework 3

Note: This guide is meant to help you understand and carry out the problem solutions on your own. It is **not** meant to provide complete solutions!

- 1. In this exercise we will prove that $\mathbb{Z}[\sqrt{-5}]$ is an integral domain but not a unique factorisation domain (UFD).
 - (a) Show that for any integer m, the set

$$\mathbb{Z}[\sqrt{m}] = \{a + b\sqrt{m} : a, b \in \mathbb{Z}\}\$$

is a subring of the field \mathbb{C} . Use this to conclude that $\mathbb{Z}[\sqrt{m}]$ is an integral domain.

You can prove that $\mathbb{Z}[\sqrt{m}]$ is a subring of \mathbb{C} using the subring test. This implies that $\mathbb{Z}[\sqrt{m}]$ is an integral domain, because if $a, b \in \mathbb{Z}[\sqrt{m}]$ satisfy $a \cdot b = 0$ then, looking at this equation as an equation in \mathbb{C} , we conclude that either a or b is zero.

Note that this argument generalises to show that every subring with identity of an integral domain is an integral domain.

(b) Now, let $S = \mathbb{Z}[\sqrt{-5}]$. In a similar way to how we computed all the units in the ring of Gaussian integers, prove that if $u = a + b\sqrt{-5}$ is a unit of S then u = 1 or u = -1.

Suppose $u = a + b\sqrt{-5}$ is a unit, so there exists $v = c + d\sqrt{-5}$ such that

$$(a+b\sqrt{-5})\cdot(c+d\sqrt{-5})=1.$$

Take modulus squared on both sides of this equation to get

$$(a^2 + 5b^2) \cdot (c^2 + 5d^2) = 1.$$

As this is an equation about integers, conclude that $a = \pm 1$ and b = 0.

(c) Note that in S we have the following factorisations of the element 6:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 - \sqrt{-5}).$$

It turns out that these are factorisations into irreducible elements. To see this, prove that the element $1+\sqrt{-5}$ is irreducible, by assuming that

$$1 + \sqrt{-5} = (a + b\sqrt{-5}) \cdot (c + d\sqrt{-5}) \tag{0.1}$$

and taking modulus squared.

Explain briefly why a similar argument shows that the other three elements $1 - \sqrt{-5}$, 2, and 3 are also irreducible.

This is similar to part (b): Take modulus squared in Equation (0.1), and argue why one of the two factors must be ± 1 .

- (d) Conclude that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD. Part (c) shows that there are elements of $\mathbb{Z}[\sqrt{-5}]$ that can be factored into irreducibles in different non-equivalent ways. Make sure you explain why these two factorisations are really not equivalent up to associates.
- 2. Consider the ring $\mathbb{R}[x]$ of polynomials with real coefficients.
 - (a) Explain why $\mathbb{R}[x]$ is a principal ideal domain. The integral domain $\mathbb{R}[x]$ is a principal ideal domain because it is a Euclidean domain. (What is a Euclidean function on it?)
 - (b) Give an example of proper non-zero ideals I₁, I₂, I₃ of R[x] such that I₁ and I₂ both contain I₃, but I₁ ⊈ I₂ and I₁ ⊉ I₂.
 Every ideal of R[x] is principal, so we are looking for three polynomials f₁, f₂, f₃ ∈ R[x] such that ⟨f₁⟩ and ⟨f₂⟩ both contain ⟨f₃⟩, but ⟨f₁⟩ ⊈ ⟨f₂⟩ and ⟨f₁⟩ ⊉ ⟨f₂⟩. Think about what this means in terms of divisibility relations among the polynomials f₁, f₂, f₃.
 - (c) Find a generator for the ideal $\langle x^2 1, x^3 1 \rangle \subseteq \mathbb{R}[x]$. Explain. As $\mathbb{R}[x]$ is a principal ideal domain, the ideal $\langle x^2 - 1, x^3 - 1 \rangle \subseteq \mathbb{R}[x]$ must be generated by a single polynomial f. The polynomial f is in fact the g.c.d. of $x^2 - 1$ and $x^3 - 1$, as discussed in the lectures. Factor the two polynomials to make a guess about what f is, and then prove that $\langle f \rangle$ is the desired ideal.
- 3. A non-zero element p of a domain R is called **prime** if p is not a unit and whenever $p \mid a \cdot b$ for some $a, b \in R$, either $p \mid a$ or $p \mid b$.
 - (a) Prove that every prime element in an integral domain R is an irreducible element.
 - Suppose that p is not irreducible, so it decomposes as $p = a \cdot b$ with $a, b \in R$ not units. Since $p \mid p$, we have $p \mid a \cdot b$. Use the fact that p is prime to reach a contradiction. Make sure you mention explicitly where you used that R is an integral domain.
 - (b) Give an example of a prime element in a domain that is not an irreducible element. Justify your answer.
 - The element $[3]_6$ in the ring \mathbb{Z}_6 of integers modulo 6 is such an example. You should explain both why it is not an irreducible element and why it is prime.

- (c) Give an example of an irreducible element in the integral domain Z[√-5] that is not a prime element. Justify your answer.
 Think about the factorisations into irreducible elements that you used in Exercise 1.
- 4. Let R be a Euclidean domain with Euclidean function d, and let $a \in R$ be a non-zero element.
 - (a) Explain why $d(a) \ge d(1)$. This follows directly from the first property of a Euclidean function. Can you see why?
 - (b) Prove that a is a unit in R if and only if d(a) = d(1). Think about what happens when you 'divide' 1 by a: There exist q and r such that $1 = a \cdot q + r$ and either r = 0 or d(r) < d(a). Use this to prove the desired statement.
- 5. In this exercise we will construct and understand the field \mathbb{F}_8 with 8 elements. Let \mathbb{Z}_2 be the ring of integers modulo 2, and consider the ring $R = \mathbb{Z}_2[x]$ of polynomials with coefficients in \mathbb{Z}_2 . Let $f = x^3 + x + 1 \in R$.
 - (a) Explain why f is an irreducible element of R. Suppose you can factor $f = g \cdot h$ with $g, h \in R$ not units, so g and h have degree at least 1. Since f has degree 3, one of g and h must have degree 1, say g, and h has degree 2. The polynomial g must have the form g = x + a with $a \in R$, which implies that a is a root of f. However, we can check that f(0) = f(1) = 1, so f has no roots in R.
 - (b) Conclude that the quotient ring $F := R/\langle f \rangle$ is a field. Since R is a principal ideal domain and f is irreducible, the ideal $\langle f \rangle$ is a maximal ideal, and thus the factor ring $R/\langle f \rangle$ is a field.
 - (c) Explain why every element of F can be written uniquely in the form $[ax^2 + bx + c]$ with $a, b, c \in \mathbb{Z}_2$. Conclude that F has exactly 8 elements. First, note that $[x^3] = [x+1]$ in F. Using this relation repeatedly, we can express any element $[g(x)] \in F$ with $\deg(g(x)) \geq 3$ as an element of the form $[ax^2 + bx + c]$. To show that this expression is unique, note that two distinct such expressions being the same element in F would imply that $\langle f \rangle$ contains a non-zero polynomial of degree at most 2, which is not possible. This implies that F contains exactly 8 elements, as there are 2 possibilities for each of a, b, c.
 - (d) Write down the multiplication table of F.

 Label the 8 rows and columns of the table with the elements of F. Fill the table by multiplying the corresponding elements and reducing the result using the relations discussed in Part 5c.