MTH6158 Ring Theory: Guide to Coursework 3

Note: This guide is meant to help you understand and carry out the problem solutions on your own. It is not meant to provide complete solutions!

1. In this exercise we will prove that $\mathbb{Z}[\sqrt{-5}]$ is an integral domain but not a unique factorisation domain (UFD).
(a) Show that for any integer m, the set

$$
\mathbb{Z}[\sqrt{m}]=\{a+b \sqrt{m}: a, b \in \mathbb{Z}\}
$$

is a subring of the field \mathbb{C}. Use this to conclude that $\mathbb{Z}[\sqrt{m}]$ is an integral domain.
You can prove that $\mathbb{Z}[\sqrt{m}]$ is a subring of \mathbb{C} using the subring test. This implies that $\mathbb{Z}[\sqrt{m}]$ is an integral domain, because if $a, b \in \mathbb{Z}[\sqrt{m}]$ satisfy $a \cdot b=0$ then, looking at this equation as an equation in \mathbb{C}, we conclude that either a or b is zero.
Note that this argument generalises to show that every subring with identity of an integral domain is an integral domain.
(b) Now, let $S=\mathbb{Z}[\sqrt{-5}]$. In a similar way to how we computed all the units in the ring of Gaussian integers, prove that if $u=a+b \sqrt{-5}$ is a unit of S then $u=1$ or $u=-1$.
Suppose $u=a+b \sqrt{-5}$ is a unit, so there exists $v=c+d \sqrt{-5}$ such that

$$
(a+b \sqrt{-5}) \cdot(c+d \sqrt{-5})=1
$$

Take modulus squared on both sides of this equation to get

$$
\left(a^{2}+5 b^{2}\right) \cdot\left(c^{2}+5 d^{2}\right)=1
$$

As this is an equation about integers, conclude that $a= \pm 1$ and $b=0$.
(c) Note that in S we have the following factorisations of the element 6:

$$
6=2 \cdot 3=(1+\sqrt{-5}) \cdot(1-\sqrt{-5})
$$

It turns out that these are factorisations into irreducible elements. To see this, prove that the element $1+\sqrt{-5}$ is irreducible, by assuming that

$$
\begin{equation*}
1+\sqrt{-5}=(a+b \sqrt{-5}) \cdot(c+d \sqrt{-5}) \tag{0.1}
\end{equation*}
$$

and taking modulus squared.
Explain briefly why a similar argument shows that the other three elements $1-\sqrt{-5}, 2$, and 3 are also irreducible.
This is similar to part (b): Take modulus squared in Equation (0.1), and argue why one of the two factors must be ± 1.
(d) Conclude that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

Part (c) shows that there are elements of $\mathbb{Z}[\sqrt{-5}]$ that can be factored into irreducibles in different non-equivalent ways. Make sure you explain why these two factorisations are really not equivalent up to associates.
2. Consider the ring $\mathbb{R}[x]$ of polynomials with real coefficients.
(a) Explain why $\mathbb{R}[x]$ is a principal ideal domain.

The integral domain $\mathbb{R}[x]$ is a principal ideal domain because it is a Euclidean domain. (What is a Euclidean function on it?)
(b) Give an example of proper non-zero ideals I_{1}, I_{2}, I_{3} of $\mathbb{R}[x]$ such that I_{1} and I_{2} both contain I_{3}, but $I_{1} \nsubseteq I_{2}$ and $I_{1} \nsupseteq I_{2}$.
Every ideal of $\mathbb{R}[x]$ is principal, so we are looking for three polynomials $f_{1}, f_{2}, f_{3} \in \mathbb{R}[x]$ such that $\left\langle f_{1}\right\rangle$ and $\left\langle f_{2}\right\rangle$ both contain $\left\langle f_{3}\right\rangle$, but $\left\langle f_{1}\right\rangle \nsubseteq\left\langle f_{2}\right\rangle$ and $\left\langle f_{1}\right\rangle \nsupseteq\left\langle f_{2}\right\rangle$. Think about what this means in terms of divisibility relations among the polynomials f_{1}, f_{2}, f_{3}.
(c) Find a generator for the ideal $\left\langle x^{2}-1, x^{3}-1\right\rangle \subseteq \mathbb{R}[x]$. Explain.

As $\mathbb{R}[x]$ is a principal ideal domain, the ideal $\left\langle x^{2}-1, x^{3}-1\right\rangle \subseteq \mathbb{R}[x]$ must be generated by a single polynomial f. The polynomial f is in fact the g.c.d. of $x^{2}-1$ and $x^{3}-1$, as discussed in the lectures. Factor the two polynomials to make a guess about what f is, and then prove that $\langle f\rangle$ is the desired ideal.
3. A non-zero element p of a domain R is called prime if p is not a unit and whenever $p \mid a \cdot b$ for some $a, b \in R$, either $p \mid a$ or $p \mid b$.
(a) Prove that every prime element in an integral domain R is an irreducible element.
Suppose that p is not irreducible, so it decomposes as $p=a \cdot b$ with $a, b \in R$ not units. Since $p \mid p$, we have $p \mid a \cdot b$. Use the fact that p is prime to reach a contradiction. Make sure you mention explicitly where you used that R is an integral domain.
(b) Give an example of a prime element in a domain that is not an irreducible element. Justify your answer.
The element $[3]_{6}$ in the ring \mathbb{Z}_{6} of integers modulo 6 is such an example. You should explain both why it is not an irreducible element and why it is prime.
(c) Give an example of an irreducible element in the integral domain $\mathbb{Z}[\sqrt{-5}]$ that is not a prime element. Justify your answer.
Think about the factorisations into irreducible elements that you used in Exercise 1.
4. Let R be a Euclidean domain with Euclidean function d, and let $a \in R$ be a non-zero element.
(a) Explain why $d(a) \geq d(1)$.

This follows directly from the first property of a Euclidean function. Can you see why?
(b) Prove that a is a unit in R if and only if $d(a)=d(1)$.

Think about what happens when you 'divide' 1 by a : There exist q and r such that $1=a \cdot q+r$ and either $r=0$ or $d(r)<d(a)$. Use this to prove the desired statement.
5. In this exercise we will construct and understand the field \mathbb{F}_{8} with 8 elements. Let \mathbb{Z}_{2} be the ring of integers modulo 2 , and consider the ring $R=\mathbb{Z}_{2}[x]$ of polynomials with coefficients in \mathbb{Z}_{2}. Let $f=x^{3}+x+1 \in R$.
(a) Explain why f is an irreducible element of R.

Suppose you can factor $f=g \cdot h$ with $g, h \in R$ not units, so g and h have degree at least 1 . Since f has degree 3, one of g and h must have degree 1 , say g, and h has degree 2 . The polynomial g must have the form $g=x+a$ with $a \in R$, which implies that a is a root of f. However, we can check that $f(0)=f(1)=1$, so f has no roots in R.
(b) Conclude that the quotient ring $F:=R /\langle f\rangle$ is a field.

Since R is a principal ideal domain and f is irreducible, the ideal $\langle f\rangle$ is a maximal ideal, and thus the factor ring $R /\langle f\rangle$ is a field.
(c) Explain why every element of F can be written uniquely in the form $\left[a x^{2}+b x+c\right]$ with $a, b, c \in \mathbb{Z}_{2}$. Conclude that F has exactly 8 elements. First, note that $\left[x^{3}\right]=[x+1]$ in F. Using this relation repeatedly, we can express any element $[g(x)] \in F$ with $\operatorname{deg}(g(x)) \geq 3$ as an element of the form $\left[a x^{2}+b x+c\right]$. To show that this expression is unique, note that two distinct such expressions being the same element in F would imply that $\langle f\rangle$ contains a non-zero polynomial of degree at most 2 , which is not possible. This implies that F contains exactly 8 elements, as there are 2 possibilities for each of a, b, c.
(d) Write down the multiplication table of F.

Label the 8 rows and columns of the table with the elements of F. Fill the table by multiplying the corresponding elements and reducing the result using the relations discussed in Part 5c.

