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Example 12.1. Suppose that Rosemary and Colin are working on a joint
project. Each of them can choose to “work hard” or “goof off.” Both of them
must work hard together to receive a high mark for the project. Both have
utility 3 for receiving a high mark utility 1 for goofing off (regardless of what
mark they receive) and utility 0 for working hard but not receiving a high
mark. Give the payoftf matrix for this game.
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Example 12.2. Find all pure Nash equilibria for the games with the following
payoff matrices.
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(b) Consider the following linear program in standard equation form:

maximise x1 + 229 — 3x3 + Tx5

subject to 1 + 229 + 223 + 4 =8,
T1 4+ 229 + Tx3 + x5 =8
2$1+4LL’2+7.ZL’3 + Zg 26,

x1,T2,X3,T4,T5,T6 2 0

For each of the following values of x' = (1, 2o, 3, 24, 75, T5) say whether or not
this value is a basic feasible solution of this linear program and also whether or
not it is an extreme point solution of this linear program. Justify your
answers.

(i) x"=(1,1,0,0,0,0)

(i) xT=(1,0,0,2,2,4)
(iii)) x"=(0,0,0,3,3,6)

9]






(c) Consider an arbitrary linear program in standard equation form:

maximise c¢'x

subject to Ax = b,
x>0

Suppose that x is an optimal solution to this linear program. Show that if x is
not an extreme point solution then we can express x as x = Ay + (1 — \)z where
A€ (0,1) and y and z are two different optimal solutions of this program.
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Question 5 [24 marks].

(a) In the following question, let 8 € R be a fixed constant. Suppose a zero-sum
2-player game has the following payoff matrix, given from the perspective of the
row player:

1

1| B

216

S O

(i) Suppose that 8 = 0. Give the security levels for each of the row and column
players’ strategies. List all pure Nash equilibria for this game or explain why
the game does not have a pure Nash equilibrium. [4]

(ii) For what range of possible values for 5 is (1,2) a pure Nash equilibrium for
this game? Justify your answer. 6]

(iii) For what range of possible values for 8 does this game have a general Nash
equilibrium? Justify your answer. [4]



(b) Consider the following 2-player game. Rosemary and Colin each select a number
n from the set {1,2,3}. If they choose the same number, neither player wins
anything. Otherwise, if the sum of their numbers is at least 5, both of them win
£1. Finally, if their numbers do not match and do not sum to at least 5, then the
player who selected the largest number n wins £n and the other player loses £n.

(i) Give the payoff matrix for this game (as usual, suppose that Rosemary is the
row player and give her payoff first in each cell). 4]

(ii) Is this a zero sum game? Justify your answer. 2]

(iii) List all pure Nash equilibria for this game. 4]
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(b) Consider the 2-player zero-sum game with the following payoff matrix (which is
given, as usual, from the perspective of the row player).

‘ C1 Co.
™ 6 —6
T9 3 9

(i) Write a linear program that finds the optimal mixed strategy for the row
player (i.e. the mixed strategy with the best security level). You do not have
to solve this linear program. 6]

(ii) Consider the mixed strategy x for the row player and y for the column
player given by x"= (1/3,2/3) and y"= (5/6,1/6). Show that this pair of
strategies is a mixed Nash equilibrium for this game. 8]






