Today

- Final material on game theory (examinable)

Revision

Week 4 - extreme point solutions basic feasible solutions

Week 10/11 Game theory

Example 12.1. Suppose that Rosemary and Colin are working on a joint project. Each of them can choose to "work hard" or "goof off." Both of them must work hard together to receive a high mark for the project. Both have utility 3 for receiving a high mark utility 1 for goofing off (regardless of what mark they receive) and utility 0 for working hard but not receiving a high mark. Give the payoff matrix for this game.

Colin

	work hord (w)	goof off (g
work hord (w)	(3,3)	(0,1)
goof off (g)	(1,0)	(1,1)

not zero-sum game

Rosemary's set of strategies R = &W, 93 Colin's Set of strategies C = &W, 93

Write out Rose many's payoff function $U_1: R \times C \rightarrow R$ Write out Colin's payoff function $U_2: R \times C \rightarrow R$

Does ar example have any Nash equiliblia?

Work hard (ω) goof off (g)

Work hard (3, 3) (0, 1)

goof off (g)

off (g)

(g)

How con we systematically and quickly findle all pure Nash equilibrium.

Example 12.2. Find all pure Nash equilibria for the games with the following payoff matrices.

Recap quiz (paraphrased defins/theorems)
Consider on LP in standard equation form
maximise $C^{T}Z$ subject to $AZ = b$, $Z > 0$.
An extreme point solution is a solution = $\frac{1}{2}$ such that $\frac{1}{2}$ cannot be written as where $\frac{1}{2}$, $\frac{1}{2}$ are distinct and $\frac{1}{2}$ $\frac{1}{2}$
A basic feasible solution is a solution in which the entries of 25 correspond to columns of A.
Last time we proved two results
O Every LP (in stendard equation form) has an Solution that is an Solution (provided it has at least one Solution).
2) Given an LP in Stendard equation form every Solution is an Solution and vice versa
(proof not completed)

(b) Consider the following linear program in standard equation form:

$$\begin{array}{lll} \text{maximise} & x_1+2x_2-3x_3+7x_5\\ \\ \text{subject to} & x_1+2x_2+2x_3+x_4 & = 3,\\ & x_1+2x_2+7x_3 & +x_5 & = 3,\\ & 2x_1+4x_2+7x_3 & +x_6=6,\\ & x_1,x_2,x_3,x_4,x_5,x_6 \geq 0 \end{array}$$

For each of the following values of $\mathbf{x}^{\mathsf{T}} = (x_1, x_2, x_3, x_4, x_5, x_6)$ say whether or not this value is a **basic feasible solution** of this linear program and also whether or not it is an **extreme point solution** of this linear program. Justify your answers.

(i)
$$\mathbf{x}^{\mathsf{T}} = (1, 1, 0, 0, 0, 0)$$

(ii)
$$\mathbf{x}^{\mathsf{T}} = (1, 0, 0, 2, 2, 4)$$

(iii)
$$\mathbf{x}^{\mathsf{T}} = (0, 0, 0, 3, 3, 6)$$

[9]

(c) Consider an arbitrary linear program in standard equation form:

maximise
$$\mathbf{c}^\mathsf{T} \mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$, $\mathbf{x} \ge \mathbf{0}$

Suppose that \mathbf{x} is an optimal solution to this linear program. Show that if \mathbf{x} is **not** an extreme point solution then we can express \mathbf{x} as $\mathbf{x} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{z}$ where $\lambda \in (0,1)$ and \mathbf{y} and \mathbf{z} are two different optimal solutions of this program.

[8]

Basic terminology

Strategy, cutcome, payoff matrix, zero-sum game,

Strategy, cutcome, payoff matrix, zero-sum game, mixed strategy

What is a pure Nash equilibrium in words/symbols? What is the security level of a strategy in words/symbols? What is bost security level for a player? How are they related?

How do we compute expected payoff when players use mixed strategy

What is a mixed Nash equilibrium in words/symbols? What is the security level of a mixed strategy in words/symbols

How are they related.
How do we write LP's to find aptimal mixed Strategy?

c.e. mixed strategy with best security.

Question 5 [24 marks].

(a) In the following question, let $\beta \in \mathbb{R}$ be a fixed constant. Suppose a zero-sum 2-player game has the following payoff matrix, given from the perspective of the row player:

$$\begin{array}{c|cccc} & 1 & 2 \\ \hline 1 & \beta & 6 \\ 2 & -6 & 0 \\ \end{array}$$

- (i) Suppose that $\beta = 0$. Give the security levels for each of the row and column players' strategies. List all pure Nash equilibria for this game or explain why the game does not have a pure Nash equilibrium.
- (ii) For what range of possible values for β is (1,2) a pure Nash equilibrium for this game? Justify your answer. [6]

[4]

(iii) For what range of possible values for β does this game have a general Nash equilibrium? Justify your answer. [4]

- (b) Consider the following 2-player game. Rosemary and Colin each select a number n from the set $\{1,2,3\}$. If they choose the same number, neither player wins anything. Otherwise, if the sum of their numbers is at least 5, both of them win £1. Finally, if their numbers do not match and do not sum to at least 5, then the player who selected the largest number n wins £n and the other player loses £n.
 - (i) Give the payoff matrix for this game (as usual, suppose that Rosemary is the row player and give her payoff first in each cell). [4]
 - (ii) Is this a zero sum game? Justify your answer. [2]
 - (iii) List all pure Nash equilibria for this game. [4]

(b) Consider the 2-player zero-sum game with the following payoff matrix (which is given, as usual, from the perspective of the row player).

$$\begin{array}{c|cccc} & c_1 & c_2. \\ \hline r_1 & 6 & -6 \\ r_2 & 3 & 9 \end{array}$$

- (i) Write a linear program that finds the optimal mixed strategy for the row player (i.e. the mixed strategy with the best security level). You do not have to solve this linear program.
- (ii) Consider the mixed strategy \mathbf{x} for the row player and \mathbf{y} for the column player given by $\mathbf{x}^{\mathsf{T}} = (1/3, 2/3)$ and $\mathbf{y}^{\mathsf{T}} = (5/6, 1/6)$. Show that this pair of strategies is a mixed Nash equilibrium for this game. [8]

[6]