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Question 1 [20 marks]. Let A, B, C be points in 3-space with respective position vectors

1 —1 1
a=|0]|,b=| 3 ,c= | —3|. Determine:

1 3 3
(a) The length of the vector a+b +¢; [3]
(b) A unit vector in the direction of a; [3]
(c) a-b; [3]
(d) axb; [3]
(e) A vector equation for the line through A and B; (4]
(f) A Cartesian equation for the plane containing A, B and C. (4]

Solutions [All parts are routine calculations]:

1
(a) a+b+c= [ 0], which has length /T +0+49 = /50 = 5v/2.
7

1/V2
(b) a has length \/5 so the unit vector in the direction of a is 0 .
1/V2
(c)a-b=—-14+0+3=2.
-3
(d axb=| -4
3
(e) r=a+A(b—a), A €, is such an equation, which in this case becomes
1 -2
r=(0]+A| 3 |],A€R.
1 2
-2 0 12
) n=(b—a)x(c—a)=| 3 | x| -=3] =] 4 ] isorthogonal to this plane, and
2 2 6

since A is contained in the plane then an equation for itis r-n =a-n = 18, which in
Cartesian form is 12x 44y 4 6z = 18, or alternatively 6x +2y 43z = 9.
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Question 2 [20 marks].
(a) What is the definition of a bound vector?
(b) What is the definition of a free vector?
(c) What does it mean to say that a bound vector represents a free vector?
(d) What is the definition of a parallelogram?
(e) State the parallelogram axiom.

(f) Given free vectors u and v, explain in terms of a parallelogram how their sum u+ v is
defined.

(g) Let O be a fixed origin in 3-space, let P and Q be any points in this space, and let R be
the point such that the figure OPQR is a parallelogram. Let p and q denote the position
vectors for P and Q, respectively. Find an expression for the free vector represented by
RP in terms of p and q.

(h) With the points as in (g) above, let S be the point such that the figure ORPS is a
parallelogram. Find an expression for the free vector represented by @ in terms of p
and q.

Solutions [Parts (a) to (f) are bookwork. Part (g) appeared on an exercise sheet. Part (h) is
unseen.]:

(a) A bound vector is a directed line segment in 3-space; in other words, a bound vector is
determined by its starting point, its length, and its direction (provided the length is
non-zero).

(b) A free vector is determined by its length and its direction (provided that the length is
not 0).

(c) We say that a bound vector represents a free vector if it has the same length and
direction as the free vector.

(d) The figure ABCD is a parallelogram if 1@ and l% represent the same free vector.
(e) If 1@ and D? represent the same vector, then B? and XB represent the same vector.

(f) Given vectors u and v we define the sum u + v as follows. Pick any point A and let
B,C, D be points such that Iﬁ represents u, IB represents v and ABCD is a
parallelogram. Then u + v is the vector represented by R .

(g) The free vector represented by ﬁ s 2p —q.

(h) The free vector represented by @ is 2q — 2p.
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Question 3 [20 marks]. Let I'I be the plane with equation 2x 4y +z = 1, let [ be the line

0

with equations x = y = z, and let Q be the point with position vector q = | 1

2
(a) Determine the distance between the point Q and the plane I1. (4]
(b) Determine the coordinates of the point on I that is closest to Q. [4]
(c) Determine the distance between the point Q and the line /. [4]
(d) Determine the point of intersection of the line / and the plane IT. 4]

(e) If I’ is the line in the direction orthogonal to IT and passing through Q, then determine
the distance between [ and /. (4]

Solutions: [All parts are fairly routine use of formulae from lectures and practiced on exercise
sheets; part (e) should be slightly more challenging]

2
(a) The vectorn = | 1 | is orthogonal to Il so this distance (using the formula derived in
1

lectures) is |q-n—1|/|n| =2/v/6 = v6/3.

(b) Using the formula from lectures, this closest point has position vector

g1 0 2 ~2/3
q—( )n: 1) —=(/3) (1] =| 2/3 ],
2 1 5/3

so its coordinates are (—2/3,2/3,5/3).

(c) The line / has vector equation r = Au where u = , so the required distance is

1
1
1
1
|u x q|/|u| (a formula from lectures). Now u x q = (2 , 50 [ux q| = /6, and
1

|u| = /3, therefore the required distance is |[u x q|/|u| = v6/v/3 = V2.
(d) The point of intersection has coordinates (1/4,1/4,1/4).

(e) The line I’ has vector equation r = ¢ + An, so by a formula from lectures the required
0
distance is |q- (uxn)|/[uxn|. Nowuxn= [ 1 |,so|uxn|=+/2,and
—1
q-(uxn)=1-2= —1, so the required distance is |q- (u xn)|/|[uxn| = 1/+/2.
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Question 4 [20 marks].

(a) What are the three types of elementary row operation that can be performed on a
matrix? [3]

(b) Describe in detail the Gaussian elimination algorithm for putting a matrix in row
echelon form. 4]

(c) Consider the linear system

2x1 4+ 3x 4+ x3 + 4dxq4 = 1
2x1 4+ 3x% + 4x3 + x4 = O
2x1 + 3x — 2x3 4+ Ixqg = 2
2x1 + 3x + 4x3 — 2x4 = 1.
(i) Write down the augmented matrix of the system. [3]

(i1) Bring the augmented matrix to row echelon form. Indicate which elementary row
operation you use at each step. [6]

(iii) Identify the leading and free variables of the reduced system, and write down the
solution set of the system. (4]

Solutions [Parts (a) and (b) are bookwork. Part (c) is similar to examples seen in lectures and
on exercise sheets]:

(a) The three types of operation are as follows:

TypeI:  interchanging two rows;
Type II:  multiplying a row by a non-zero scalar;
Type III: adding a multiple of one row to another row.

(b) The algorithm is as follows:

Step 1: If the matrix consists entirely of zeros, stop — it is already in row echelon form.

Step 2: Otherwise, find the first column from the left containing a non-zero entry (call it
a), and move the row containing that entry to the top position.

Step 3: Now multiply that row by 1/a to create a leading 1.

Step 4: By subtracting multiples of that row from rows below it, make each entry below
the leading 1 zero.

This completes the first row. All further operations are carried out on the other rows.
Step 5: Repeat steps 1-4 on the matrix consisting of the remaining rows

The process stops when either no rows remain at Step 5 or the remaining rows consist
of zeros.
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(i) The augmented matrix of the system is

23 1 4|1
23 4 1|0
23 =2 7|2
23 4 2|1

(i) Using elementary row operations Ry — R, — Ry, R3 — R3 — R and R4 — R4 — R,

gives
23 1 411
00 3 -3|-1
00 -3 3|1 ’
00 3 —6|0

then using elementary row operations R3 — R3 + R, and R4 — R4 — R, gives

231 41
00 3 =3|-1
000 O0}]O0 [
000 =31

then using elementary row operation R3 <+ R4 gives

231 41
00 3 -3]-1
000 =3]1 ’
000 O0]O

then using elementary row operations Ry — (1/2)Ry, R, — (1/3)R; and
R3; — (—1/3)R;3 gives

1 3/2 1/2 2| 1/2

0 0 I —-1|-1/3

0 0 0 1 [—1/3 |°
0 O 0 0 0

which is in row echelon form.

The leading variables are x;, x3 and x4, while the free variable is x;. We see that
x4 =—1/3,andx3 =x4—1/3=-2/3, and
x1=—(3/2)xp—(1/2)x3 —2x4+1/2 = —(3/2)x2+ 3/2, so the solution set is

2
3’

1

3

):aelR}.
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Question 5 [20 marks]. Let

0 -1 3 3 -2 -2 -2 3
A=|11 0 -3 |,B=|-3 1 | and C= 2 1 0
I 2 0 2 —1 -1 1 =2

(a) For each of the expressions B2, BA, CB, CA, A — 4B, and —A + 5C, state whether or not

it exists, and if it exists then evaluate it. [12]

. 0 1. . .
(b) Is the matrix < 0 2 ) invertible? Justify your answer. [2]
(c) Find a 2 x 2 matrix D such that D # 05,5 but D*> = 0,. [3]
(d) Find 2 x 2 matrices E and F such that EF = 0y4, but FE # 0245. [3]

Solutions [Part (a) is routine, part (b) is fairly routine, parts (c) and (d) appear on an exercise
sheet]:

(a) B? does not exist.

BA does not exist.

6 —1
CB = 3 -3
—-10 5
1 8 0
CA = 1 -2 3
-1 -3 -6
A — 4B does not exist
0O 1 -3 —10 —10 15 -10 -9 12
-A+5C=1| -1 0 3 |+ 10 5 0| = 9 5 3
-1 -2 0 -5 5 —10 -6 3 —10

(b) The matrix < 8 é ) is not invertible. To see this, either note that its determinant is

. . a
zero, or alternatively note that for any other 2 x 2 matrix (

(02) (e )=o)

which cannot equal the identity matrix.

b
d ), we have

(c) One possibility is D = ( 8 (1) >
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(d) One possibility is to take E = ( 8 (1) ),F = ( (1) 8 ) Then EF = 0>, but

01
FE:<O O)ZE#Ozxz-

End of Paper.
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