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Question 1 [25 marks].

(a) Let A = (−1, 3,−2), B = (0, 1, 5) and C = (−2, 1, 7). Compute [10]

|
−→
BA|
|
−→
AC|2

.

(b) Let u =

 1
0
3

, and P be the point in R3 with position vector p =

 −1
2
0

.

(i) Write the parametric equations of the line l through P in the direction of the
vector u. [5]

(ii) Does the point Q = (1, 2, 1) lie on the line l? Justify your answer with a
short argument. [5]

(c) Let v = ai+ bj+ ck and let R be the point in R3 with coordinates (a, b, c). Prove
that |v| is the length of the segment OR. [5]
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Solutions:

(a) Similar to examples seen in lecture notes.

Let A = (−1, 3,−2), B = (0, 1, 5) and C = (−2, 1, 7). By direct computations we
have

−→
BA =

 −1
2
−7


and

|
−→
BA| =

√
1 + 4 + 49 =

√
54.

Since,

−→
AC =

 −1
−2
9


we have that

|
−→
AC|2 = 1 + 4 + 81 = 86.

Concluding,

|
−→
BA|
|
−→
AC|2

=

√
54

86
=

3
√
6

86
.

[10]

(b) (i) Definition seen in lecture notes.

The parametric equations of the line l through P in the direction of the
vector u are given by

x = −1 + λ,

y = 2,

z = 0 + 3λ,

with λ ∈ R. [5]

(ii) Similar to examples seen in lecture notes.

The point Q = (1, 2, 1) belongs to the line l if there exists λ ∈ R such that

1 = −1 + λ,

2 = 2,

1 = 3λ.

From the first equation we get λ = 2, however λ = 2 does not fulfil the third
equation. This means that the system is inconsistent and therefore Q does
not belong to l. [5]
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(c) Proof available in the lecture notes. [5]

We assume that R ̸= O otherwise the statement is trivial. To compute the length
of the segment OR we project R on the xy-plane. We get the point S = (a, b, 0).

The length of the segment OS by Pythagoras’ theorem on the xy-plane is given
by

√
a2 + b2. Let us consider the triangle OSR with sides OS and QR. By

applying Pythagoras’ Theorem again, we have that the length of OR is given by

√
a2 + b2 + c2 = |v| .
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Question 2 [25 marks].

In a three dimensional space R3, consider plane Π1 given by the Cartesian equation
x+ y + z = 6, plane Π2 given by the Cartesian equation x+ 2y + 3z = 14, and plane Π3

given by the Cartesian equation x+ 3y + 2z = 13.

(a) Write down the linear system A, whose solutions are the intersection of these
three planes. Write down the associated homogeneous system B to this linear
system A. [5]

(b) Bring the augmented matrix of the homogeneous system B obtained in (a) to row
echelon form. State the leading and free variables of the system in this form, and
find all solutions of B. [10]

(c) Based on the solutions of B, state how many points are in the intersection of the
three planes. Write down all solutions of the linear system A. [10]
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Solutions:

(a) Application of definitions seen in lecture notes.

The linear system A, whose solutions are the intersection of the three planes is

x+ y + z = 6,

x+ 2y + 3z = 14,

x+ 3y + 2z = 13.

The associated homogeneous system B is,

x+ y + z = 0,

x+ 2y + 3z = 0,

x+ 3y + 2z = 0.

(b) Similar to examples seen in lecture notes.

The augmented matrix of system B is 1 1 1 0
1 2 3 0
1 3 2 0

 .

Performing the Gaussian Algorithm on the augmented matrix above gives its row
echelon form:  1 1 1 0

1 2 3 0
1 3 2 0

 R2−R1−−−−→
R3−R1

 1 1 1 0
0 1 2 0
0 2 1 0

 R3−2R2−−−−→

 1 1 1 0
0 1 2 0
0 0 −3 0

 − 1
3
R3−−−→

 1 1 1 0
0 1 2 0
0 0 1 0

 .

In the row echelon form, we have 3 non-zero rows and thus 3 leading 1s, which
correspond to the 3 leading variables, x, y and z. There are no free variables.
Thus, the system has a unique solution, which is its trivial solution (0, 0, 0).
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(c) Similar to examples seen in lecture notes.

By part (b), the system B has three leading variables, and the trivial solution is
therefore its only solution. According to Theorem 6.3.6 in the lecture notes, an
n× n system is consistent and has a unique solution if and only if the only
solution of the associated homogeneous system is the zero solution. Thus, system
A has a unique solution. This means the three planes intersect at a single point.

The same sequence of elementary row operations (given by the Gaussian
Algorithm) can bring the augmented matrix of a system and its associated
homogeneous system to the row echelon form. Thus, we can bring the system A
to row echelon form by:

 1 1 1 6
1 2 3 14
1 3 2 13

 R2−R1−−−−→
R3−R1

 1 1 1 6
0 1 2 8
0 2 1 7

 R3−2R2−−−−→

 1 1 1 6
0 1 2 8
0 0 −3 −9

 − 1
3
R3−−−→

 1 1 1 6
0 1 2 8
0 0 1 3

 .

The solution of system A is therefore

z = 3 ,

y = 8− 2z = 2 ,

x = 6− z − y = 1 .
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Question 3 [25 marks].

(a) Let

C =

 2 1 −9
−3 1 2
5 −4 0

 .

Evaluate CT , CTC, 1
2
(C + CT ). [4]

(b) Prove that for any square matrix A, the matrices ATA and 1
2
(A+ AT ) are both

symmetric. [6]

(c) If we take B = 1
2
(A+ AT ), then prove (A−B)T = B − A. [5]

(d) Are the matrices ATA and AAT always equal? Either prove this result or state a
counter-example. [4]

(e) Prove that if A is invertible, then so is ATA. [6]
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Solutions:

(a) Similar to examples seen in lecture notes.

We have

CT =

 2 −3 5
1 1 −4
−9 2 0

 .

We use this to compute the product

CTC =

 2 −3 5
1 1 −4
−9 2 0

 2 1 −9
−3 1 2
5 −4 0

 =

 38 −21 −24
−21 18 −7
−24 −7 85


and the linear combination

1

2
(C + CT ) =

1

2

 2 1 −9
−3 1 2
5 −4 0

+

 2 −3 5
1 1 −4
−9 2 0

 =

 2 −1 −2
−1 1 −1
−2 −1 0

 .

(b) Unseen proof.

By Theorem 7.2.3. d), we have

(ATA)T = AT (AT )T .

Note however, that (AT )T = A (Theorem 7.2.3 a)), and therefore

(ATA)T = ATA .

Hence, the matrix ATA is equal to its transpose, and is by definition symmetric.
For the second matrix, Theorem 7.2.3 b) gives us

(
1

2

(
A+ AT

))T

=
1

2

(
A+ AT

)T
.

We now invoke the result of Theorem 7.2.3 c) to get

(
1

2

(
A+ AT

))T

=
1

2

(
AT + (AT )T

)
=

1

2

(
AT + A

)
,

again using Theorem 7.2.3 a). By the commutativity of matrix addition,

(
1

2

(
A+ AT

))T

=
1

2

(
A+ AT

)
,

giving the result.
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(c) Algebraic manipulation.

In the previous part, we proved that B is symmetric, and so BT = B. Hence,

(A−B)T = AT −BT = AT −B .

We can now use the definition of B to obtain

(A−B)T = AT − 1

2

(
A+ AT

)
= −1

2
A+

(
AT − 1

2
AT

)
=

(
1

2
A− A

)
+

1

2
AT

=
1

2

(
A+ AT

)
− A

= B − A .

(d) Counter-example using definitions given in lecture notes.

The matrices ATA and AAT are, in general, not equal. Indeed, take

A =

(
1 1
0 1

)
.

We have

ATA =

(
1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
,

whereas

AAT =

(
1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
.

It is clear that in this example, ATA ̸= AAT , and so the conjecture is disproved.

(e) Unseen proof.

Firstly, since A is invertible, then by Theorem 7.2.4, so is AT and

(AT )−1 = (A−1)T .

Secondly, we use Theorem 7.1.19 to show that since AT and A are both invertible,
so is their product ATA, with

(ATA)−1 = A−1(AT )−1 = A−1(A−1)T .
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Question 4 [25 marks].
Consider the matrix

A =

1 −1 −4
0 7 −5
3 4 9

 .

(a) Find elementary matrices E1, E2, E3 such that U = E3E2E1A, where U is an
upper triangular matrix. [8]

(b) Evaluate the determinant of A and state whether A is invertible. [7]

(c) Evaluate the determinant of the following matrix: [10]

B =


7 1 −1 −4
8 1 −1 −4
5 0 14 −10
9 3 4 9

 .
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Solutions:

(a) Similar to examples seen in tutorials.

We can begin the process of Gauss-Jordan Inversion by swapping the second and
third rows of A,

E1A =

1 −1 −4
3 4 9
0 7 −5

 ,

where

E1 =

1 0 0
0 0 1
0 1 0

 .

Next, we subtract 3 times the first row from the second, giving

E2E1A =

1 −1 −4
0 7 21
0 7 −5

 ,

where

E2 =

 1 0 0
−3 1 0
0 0 1

 .

Finally, we subtract the second row from the third, to get

E3E2E1A =

1 −1 −4
0 7 21
0 0 −26

 ,

where

E3 =

1 0 0
0 1 0
0 −1 1

 .

The resulting matrix E3E2E1A is upper triangular, hence U = E3E2E1A.
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(b) Use of results seen in lectures.

By Theorem 8.3.12, we have

det(U) = det(E3) det(E2) det(E1) det(A) .

Theorem 8.3.11 gives us

det(E1) = −1

det(E2) = 1

det(E3) = 1 ,

since E1 is a Type I elementary matrix, whereas E1 and E2 are both Type III.
Since U is upper triangular, we can also use Theorem 8.2.8 to compute its
determinant as the product of its diagonal entries, giving

det(U) = (1)(7)(−26) = −182 .

In summary, we have found that

−182 = (1)(1)(−1) det(A) ,

and thus, det(A) = 182. As this determinant is non-zero, the matrix A is
invertible.
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(c) Similar to examples seen in lecture notes.

We can take a Cofactor expansion down the first column, to get

det(B) =

∣∣∣∣∣∣∣∣
7 1 −1 −4
8 1 −1 −4
5 0 14 −10
9 3 4 9

∣∣∣∣∣∣∣∣
= 7

∣∣∣∣∣∣
1 −1 −4
0 14 −10
3 4 9

∣∣∣∣∣∣− 8

∣∣∣∣∣∣
1 −1 −4
0 14 −10
3 4 9

∣∣∣∣∣∣+ 5

∣∣∣∣∣∣
1 −1 −4
1 −1 −4
3 4 9

∣∣∣∣∣∣− 9

∣∣∣∣∣∣
1 −1 −4
1 −1 −4
0 14 −10

∣∣∣∣∣∣ .

we note that the first two sub-determinants computed above are equal. We also
note that since the latter two sub-determinants each contain a repeated row, their
value is equal to zero. Hence,

det(B) = −

∣∣∣∣∣∣
1 −1 −4
0 14 −10
3 4 9

∣∣∣∣∣∣ .

Next, we note that the determinant on the right-hand side of the above equality
differs from the determinant computed in the previous part only by a factor of 2
in the second row. Hence, by Theorem 8.3.1,∣∣∣∣∣∣

1 −1 −4
0 14 −10
3 4 9

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
1 −1 −4
0 7 −5
3 4 9

∣∣∣∣∣∣ = (2)(182) = 364 .

Finally, by the equality shown above, we have

det(B) = −

∣∣∣∣∣∣
1 −1 −4
0 14 −10
3 4 9

∣∣∣∣∣∣ = −364 .

End of Paper.
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