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Question 1 [25 marks].

(a) Let A = (−1, 3,−2), B = (0, 1, 5) and C = (−2, 1, 7). Compute [10]

|
−→
BA|
|
−→
AC|2

.

(b) Let u =

 1
0
3

, and P be the point in R3 with position vector p =

 −1
2
0

.

(i) Write the parametric equations of the line l through P in the direction of the
vector u. [5]

(ii) Does the point Q = (1, 2, 1) lie on the line l? Justify your answer with a
short argument. [5]

(c) Let v = ai+ bj+ ck and let R be the point in R3 with coordinates (a, b, c). Prove
that |v| is the length of the segment OR. [5]

Question 2 [25 marks].

In a three dimensional space R3, consider plane Π1 given by the Cartesian equation
x+ y + z = 6, plane Π2 given by the Cartesian equation x+ 2y + 3z = 14, and plane Π3

given by the Cartesian equation x+ 3y + 2z = 13.

(a) Write down the linear system A, whose solutions are the intersection of these
three planes. Write down the associated homogeneous system B to this linear
system A. [5]

(b) Bring the augmented matrix of the homogeneous system B obtained in (a) to row
echelon form. State the leading and free variables of the system in this form, and
find all solutions of B. [10]

(c) Based on the solutions of B, state how many points are in the intersection of the
three planes. Write down all solutions of the linear system A. [10]
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Question 3 [25 marks].

(a) Let

C =

 2 1 −9
−3 1 2
5 −4 0

 .

Evaluate CT , CTC, 1
2
(C + CT ). [4]

(b) Prove that for any square matrix A, the matrices ATA and 1
2
(A+ AT ) are both

symmetric. [6]

(c) If we take B = 1
2
(A+ AT ), then prove (A−B)T = B − A. [5]

(d) Are the matrices ATA and AAT always equal? Either prove this result or state a
counter-example. [4]

(e) Prove that if A is invertible, then so is ATA. [6]

Question 4 [25 marks].
Consider the matrix

A =

1 −1 −4
0 7 −5
3 4 9

 .

(a) Find elementary matrices E1, E2, E3 such that U = E3E2E1A, where U is an
upper triangular matrix. [8]

(b) Evaluate the determinant of A and state whether A is invertible. [7]

(c) Evaluate the determinant of the following matrix: [10]

B =


7 1 −1 −4
8 1 −1 −4
5 0 14 −10
9 3 4 9

 .

End of Paper.
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