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In this examination the symbol R denotes the sets of real numbers.

Question 1. [4 marks]

(a) Give the definition of a metric space (X ,d). [2]

[Bookwork] A metric space is a pair (X ,d) where X is a set and
d : X×X → R is a function satisfying:

M1: For x,y ∈ X one has d(x,y)> 0 and d(x,y) = 0 iff x = y.

M2: d(x,y) = d(y,x).

M3: d(x,y)6 d(x,z)+d(z,y) for any x,y,z ∈ X .

(b) Explain what it means for a subset U ⊆ X in a metric space to be open. [2]

[Bookwork] A subset U ⊆ X is open if for any x ∈U there exists ε > 0 such
that B(x,ε)⊆U .

Question 2. [10 marks]

(a) When do we say that a sequence {xn}n>1 of points in a metric space X
converges to a point x0 ∈ X? [2]

[Bookwork] We say that a sequence xn ∈ X converges to a point x0 ∈ X if for
any ε > 0 there exists N > 0 such that for any n > N one has d(xn,x0)< ε .

(b) When do we say that a sequence {xn}n>1 of points in a topological space X
converges to a point x0 ∈ X? [2]

[Bookwork] We say that a sequence {xn}n>1 of points in a topological space
X converges to a point x0 if for any open set U containing x0 there is N such
that xn ∈U for all n > N.

(c) Let X be a metric space. Is it possible that a sequence of points {xn}n>1,
xn ∈ X converges to two distinct points x0,x′0 ∈ X , x0 6= x′0? Justify your
answer. [2]

[Bookwork] The limit of a sequence in a metric space is unique. Indeed,
suppose that xn→ x0 and xn→ x′0. Take ε = d(x0,x′0)/2 > 0. Then for all
large n the point xn must lie in B(x0,ε)∩B(x′0,ε) = /0 - contradiction.

(d) Consider X = R with the finite-complement topology (i.e. when open
subsets are complements of the finite subsets). Consider the sequence
xn = n ∈ X and find all points x0 ∈ X such that the sequence {xn}n>1
converges to x0. Justify your answer. [4]

[Bookwork] In R with the finite-complement topology the sequence {xn}
with xn = n converges to any number x0 ∈ R.
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Question 3. [10 marks]

(a) Explain what is meant for a metric space (X ,d) to be complete and give an
example of a metric space which is not complete. Justify your answer. [2]

[Bookwork] We say that a metric space (X ,d) is complete if any Cauchy
sequence in X converges. The space X = R−{0} with the induced metric is
not complete as the sequence xn = 1/n is Cauchy but does not have a limit in
X .

(b) Let X be a metric space and let F ⊆ X be a closed subset. Show that F is
complete with respect to the induced metric. [2]

[Bookwork] If xn is a Cauchy sequence in F then it is converges in X (since
X is complete) and the limit x0 = limxn must belong to F since F is closed.
Hence any Cauchy sequence in F converges, i.e. F is complete.

(c) Which of the following subsets of R are complete when considered as
subspaces of R with the usual metric? Briefly justify your answer.

(i) {3n; n = 1,2, . . .}, [2]
[Seen similar] This set is complete as a closed subset of a complete
metric space R.

(ii) {3−n; n = 1,2, . . .}, [2]
[Seen similar] This set is not complete since it is a subset which is not
closed in R.

(iii) {3−n; n = 1,2, . . .}∪{0}. [2]
[Seen similar] This set is complete as a closed subset of a complete
metric space R.

Question 4. [10 marks]

(a) Define the sup metric on the set C[0,π] of all real continuous function on the
closed interval [0,π]. [3]

[Bookwork] For f ,g ∈C[0,π] we set

d( f ,g) = max
t∈[0,π]

| f (t)−g(t)|.

We use the fact that the function f −g is continuous on the closed interval
and hence it is bounded and attains its maximum and minimum.

(b) Is C[0,π] complete? (No proof is required.) [3]

[Bookwork] The space C[0,π] is complete (it was proven in lectures).
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(c) Decide whether the sequence of functions

fn(x) = sin(nx), x ∈ [0,π],

converges in C[0,π] with respect to the sup metric. [4]

[Seen] Set x0 = π/2. Then for any even n one has fn(x0) = sin(nx0) = 0 and
for any odd n one has fn(x0) = sin(nx0) =±1 (it is 1 if n≡ 1 mod 4 and −1
if n≡ 3 mod 4). Hence we see that the sequence of real numbers fn(x0)
does not converge for x0 = π/2 and hence the sequence of functions { fn}
does not converge in C[0,π].

Question 5. [23 marks]

(a) Give the ε – δ definition of continuity of a map f : X → Y between metric
spaces (X ,dX) and (Y,dY ). [3]

[Bookwork] A map f : X → Y is continuous if for any x ∈ X and for any
ε > 0 there exists δ > 0 such dX(x,y)< δ implies dY ( f (x), f (y))< ε .

(b) Show that if a map f : X → Y is continuous then for any open set U ⊆ Y the
preimage f−1(U)⊆ X is open. [4]

[Bookwork] Suppose that f : X → Y is continuous and x ∈ f−1(U) where
U ⊆ Y is open. Then f (x) ∈U and there exists ε > 0 such that
B( f (x),ε)⊆U . Let δ > 0 be the number given by the definition of
continuity, see above. Then

f (B(x,δ ))⊆ B( f (x),ε)⊆U

i.e. B(x,δ )⊆ f−1(U). This shows that f−1(U) is open.

(c) Give an example of a non-constant continuous map f : R→ R and an open
subset U ⊆ R such that the image f (U)⊆ R is not open. [5]

[Unseen] Set f (x) = x2 for x ∈ R. The image of the open interval (−1,1) is
[0,1), not open.

(d) Show that if a map f : X → Y is continuous then for any closed set F ⊆ Y the
preimage f−1(F)⊆ X is closed. [4]

[Bookwork] If F ⊆ Y is closed then the complement Fc is open and

( f−1(F))c = f−1(Fc)

is open, hence f−1(F) is closed.
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(e) Is it true that the image of a closed set under a continuous map is closed?
Explain your answer. [7]

[Unseen] Consider the continuous map f : R→ R where f (x) = e−x. The set
F = {1,2,3, . . .} is closed and its image f (F) = {e−1,e−2,e−3, . . .} is not
closed. Hence it is not true in general that the image of a closed set under a
continuous map is closed.

Question 6. [17 marks]

(a) What is meant by an open cover of a topological space? [2]

[Bookwork] An open cover of X is a family of open sets {U}, where U ⊂ X ,
such that the union ∪{U} equals X

(b) When do we say that a topological space is compact? [3]

[Bookwork] We say that a topological space X is compact if any open cover
of X has a finite subcover.

(c) Which of the following subsets of the real line R are compact? Briefly justify
your answer:

(i) R; [3]
[Bookwork] Not compact as it is not bounded.

(ii) [2,3]; [3]
[Bookwork] Compact; it is a closed and bounded subset of the real line.

(iii) (2,3); [3]
[Bookwork] Not compact as it is not closed.

(iv) [2,∞); [3]
[Bookwork] Not compact as it is not bounded.

Question 7. [26 marks]

(a) State the contraction mapping theorem. [5]

[Bookwork] Let f : X → X be a contraction of a complete metric space X .
Then f has a unique fixed point x0 ∈ X , i.e. f (x0) = x0.
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(b) Consider R2 with the d1-metric, i.e. d1(v,v′) = |x− x′|+ |y− y′| where
v = (x,y) and v′ = (x′,y′). Is this metric space complete? Justify your
answer. [5]

[Bookwork] This metric space is complete. If vn = (xn,yn) is a Cauchy
sequence then for any ε > 0 there exists N such that |xn− xm|+ |yn− ym|< ε

for n,m > N; hence each of the sequences {xn} and {yn} is Cauchy and
hence converges in R. If x0 and y0 are their limits then vn converges to
v0 = (x0,y0) in the d1-metric.

(c) Let f : R2→ R2 be given by

f (v) = (
1
3

y,
1
2
(x+1)),

where v = (x,y). Show that f is a contraction with respect to the d1-metric. [10]

[Unseen] Let v = (x,y) and v′ = (x′,y′). Then f (v) = (1
3y, 1

2(x+1)) and
f (v′) = (1

3y′, 1
2(x
′+1)). We obtain

d1( f (v), f (v′)) =
1
3
|y− y′|+ 1

2
|x− x′|6 1

2
d1(v,v′).

Hence we see that f is a contraction with coefficient α = 1/2.

(d) Find the fixed point of f . [6]

[Unseen, seen similar] To find the fixed point we solve the system of
equations

1
3y = x,
1
2(x+1) = y.

We find (x,y) = (1/5,3/5).

End of Paper.
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