
Vectors & Matrices

Solutions to Problem Sheet 10

1. (i) We can perform a Cofactor Expansion down the first column to obtain

∣∣∣∣∣∣∣∣∣∣
3 1 −2

−4 5 4

1 2 −1

∣∣∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣∣
5 4

2 −1

∣∣∣∣∣∣∣− (−4)

∣∣∣∣∣∣∣
1 −2

2 −1

∣∣∣∣∣∣∣+ 1

∣∣∣∣∣∣∣
1 −2

5 4

∣∣∣∣∣∣∣ .

We can now use the definition of a 2× 2 determinant to evaluate

∣∣∣∣∣∣∣
5 4

2 −1

∣∣∣∣∣∣∣ = (5)(−1)− (4)(2) = −13 ,

∣∣∣∣∣∣∣
1 −2

2 −1

∣∣∣∣∣∣∣ = (1)(−1)− (−2)(2) = 3 ,

∣∣∣∣∣∣∣
1 −2

5 4

∣∣∣∣∣∣∣ = (1)(4)− (−2)(5) = 14 ,

and find ∣∣∣∣∣∣∣∣∣∣
3 1 −2

−4 5 4

1 2 −1

∣∣∣∣∣∣∣∣∣∣
= 3(−13)− (−4)(3) + (1)(14) = −13 .

(ii) We note that the first row of the determinant

∣∣∣∣∣∣∣∣∣∣
6 2 −4

1 2 −1

−4 5 4

∣∣∣∣∣∣∣∣∣∣
differs from the first row of the determinant in part (i) only by a factor of 2. Hence, we use

Theorem 8.3.1 to obtain

∣∣∣∣∣∣∣∣∣∣
6 2 −4

1 2 −1

−4 5 4

∣∣∣∣∣∣∣∣∣∣
= (2)

∣∣∣∣∣∣∣∣∣∣
3 1 −2

1 2 −1

−4 5 4

∣∣∣∣∣∣∣∣∣∣
.
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This new determinant differs from the determinant in part (i) by only a swap of the second

and third rows. We therefore invoke the result of Theorem 8.3.1 a) to find

∣∣∣∣∣∣∣∣∣∣
6 2 −4

1 2 −1

−4 5 4

∣∣∣∣∣∣∣∣∣∣
= (2)

∣∣∣∣∣∣∣∣∣∣
3 1 −2

1 2 −1

−4 5 4

∣∣∣∣∣∣∣∣∣∣
= (2)(−1)

∣∣∣∣∣∣∣∣∣∣
3 1 −2

−4 5 4

1 2 −1

∣∣∣∣∣∣∣∣∣∣
.

This final determinant is equal to the one evaluated in part (i), the value of which we know

to be −13, hence ∣∣∣∣∣∣∣∣∣∣
6 2 −4

1 2 −1

−4 5 4

∣∣∣∣∣∣∣∣∣∣
= (2)(−1)(−13) = 26 .

(iii) We again proceed by a Cofactor Expansion. We will choose to expand down the first column

for two reasons:

– It is clear that the sub-determinants formed by eliminating the first column and first row,

and the first column and second row, are both equal to the determinant given in part (ii),

the value of which we already know.

– All other sub-determinants formed by eliminating the first column and a single row have

a repeated row, which we can show always results in a value of zero.

We have

∣∣∣∣∣∣∣∣∣∣∣∣∣

3 6 2 −4

2 6 2 −4

−7 1 2 −1

−1 −4 5 4

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (3)

∣∣∣∣∣∣∣∣∣∣
6 2 −4

1 2 −1

−4 5 4

∣∣∣∣∣∣∣∣∣∣
−(2)

∣∣∣∣∣∣∣∣∣∣
6 2 −4

1 2 −1

−4 5 4

∣∣∣∣∣∣∣∣∣∣
+(−7)

∣∣∣∣∣∣∣∣∣∣
6 2 −4

6 2 −4

−4 5 4

∣∣∣∣∣∣∣∣∣∣
−(−1)

∣∣∣∣∣∣∣∣∣∣
6 2 −4

6 2 −4

−1 2 −1

∣∣∣∣∣∣∣∣∣∣
.

As discussed above, we already have

∣∣∣∣∣∣∣∣∣∣
6 2 −4

1 2 −1

−4 5 4

∣∣∣∣∣∣∣∣∣∣
= 26

from part (ii).
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Next, consider a determinant with at least two equal rows, e.g.

∣∣∣∣∣∣∣∣∣∣
6 2 −4

6 2 −4

−4 5 4

∣∣∣∣∣∣∣∣∣∣
,

By Theorem 8.3.1 c), we can subtract the second row from the first, and the resulting deter-

minant will be equal to the original, i.e.

∣∣∣∣∣∣∣∣∣∣
6 2 −4

6 2 −4

−4 5 4

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
0 0 0

6 2 −4

−4 5 4

∣∣∣∣∣∣∣∣∣∣
.

A Cofactor Expansion across the first row of this right-hand determinant would always give

terms containing factors of zero, and so regardless of the value of each respective cofactor,

the resulting determinant will be equal to zero. We have now found values for all four sub-

determinants generated from our determinant, and can compute

∣∣∣∣∣∣∣∣∣∣∣∣∣

3 6 2 −4

2 6 2 −4

−7 1 2 −1

−1 −4 5 4

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (3)(26)− (2)(26) + (−7)(0)− (−1)(0) = 26 .

2. Let Ei be the Type II elementary matrix, the effect of which is to multiply the ith row of a matrix

by a factor of α, i.e.

E1 =



α 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


, E2 =



1 0 . . . 0

0 α . . . 0

...
...

. . .
...

0 0 . . . 1


, . . . , En =



1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . α


.

By Theorem 8.3.11, we see that det(Ei) = α, for each i ∈ {1, . . . , n}. By definition, αA is equal

to the matrix A with each one of its entries multiplied by a factor of α. Since the effect of left-

multiplying A by Ei is to rescale the ith row of A by α, we have

αA = E1E2 . . . EnA .
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We can therefore use the multiplicativity of determinants (Theorem 8.3.12) to show

det(αA) = det(E1E2 . . . EnA)

= det(E1) det(E2 . . . EnA)

= α det(E2 . . . EnA) ,

since det(E1) = α. We can replicate this idea with all other elementary factors in the right-hand

determinant to obtain

det(αA) = α det(E2 . . . EnA)

= α det(E2) det(E3 . . . EnA)

= α2 det(E3 . . . EnA)

= . . .

= αn det(A) ,

giving the result.

3. By Theorem 8.3.9 b), if we multiply the second column of the determinant by a factor of a, and

multiply the entire determinant by a factor of 1
a , then the overall value will not change. Therefore,

∣∣∣∣∣∣∣
x1 x2

1

x2 x2
2

∣∣∣∣∣∣∣ =
1

a

∣∣∣∣∣∣∣
x1 ax2

1

x2 ax2
2

∣∣∣∣∣∣∣ .

Since x1 and x2 both solve the equation ax2 + bx+ c = 0, we have

∣∣∣∣∣∣∣
x1 x2

1

x2 x2
2

∣∣∣∣∣∣∣ =
1

a

∣∣∣∣∣∣∣
x1 −bx1 − c

x2 −bx2 − c

∣∣∣∣∣∣∣ .
Next, as a result of Theorem 8.3.9 c), it is clear that adding b times the first column to the second

will not change the value of the determinant, giving

∣∣∣∣∣∣∣
x1 x2

1

x2 x2
2

∣∣∣∣∣∣∣ =
1

a

∣∣∣∣∣∣∣
x1 −c

x2 −c

∣∣∣∣∣∣∣ .

4



Finally, Theorem 8.3.9 b) tells us that we can extract the factor of −c present in all terms in the

second column, and bring it outside the determinant as

∣∣∣∣∣∣∣
x1 x2

1

x2 x2
2

∣∣∣∣∣∣∣ = − c

a

∣∣∣∣∣∣∣
x1 1

x2 1

∣∣∣∣∣∣∣ .
We now use the formula of a 2× 2 determinant to obtain

∣∣∣∣∣∣∣
x1 x2

1

x2 x2
2

∣∣∣∣∣∣∣ = −c((x1)(1)− (1)(x2))

a
=

c(x2 − x1)

a
.

All that remains is to evaluate x2 − x1 in terms of the coefficients a, b, c. Since x1 < x2, then by

the quadratic formula,

x1 =
−b−

√
b2 − 4ac

2a
and x2 =

−b+
√
b2 − 4ac

2a
,

and so

x2 − x1 =

(
−b+

√
b2 − 4ac

2a

)
−

(
−b−

√
b2 − 4ac

2a

)

=
−b+

√
b2 − 4ac− (−b−

√
b2 − 4ac)

2a

=
2
√
b2 − 4ac

2a

=

√
b2 − 4ac

a
.

Combining this with our formulation for the determinant above, we have

∣∣∣∣∣∣∣
x1 x2

1

x2 x2
2

∣∣∣∣∣∣∣ =
c
√
b2 − 4ac

a2
.

4. (i) Let P = (pij) and Q = (qij) be permutation matrices of size n × n. The element of the

product PQ at index (i, j) is given by

n∑
k=1

pikqkj .
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However, since P is a permutation matrix, as we move along the ith row there is only a single

value k ∈ {1, . . . n} such that pik = 1. For all other values of k, pik is equal to zero. The same

holds for the values qkj down the jth column of Q (although this need not be the same value

k that gave the non-zero entry in the ith row of P ).

For the ith row of P , let k1 be the unique index such that pik1
= 1. For the jth column of Q,

let k2 be the unique index such that qk2j = 1. If k1 = k2, we have

n∑
k=1

pikqkj = pik1
qk2j = (1)(1) = 1 ,

and hence, the entry of PQ at (i, j) is equal to one. Otherwise, if k1 ̸= k2,

n∑
k=1

pikqkj = pik1
pk1j + pik2

qk2j = (1)(0) + (0)(1) = 0 ,

and the entry of PQ at (i, j) is equal to zero. We now fix a row i of the product PQ, and

move along each of the columns. We have already seen that for the row i, there is a unique

index k1 such that pik1
= 1. As we move through each column j, each new value of j gives

a corresponding row index k2 such that qk2j = 1. Moreover, since permutation matrices have

only a single non-zero entry in each of their rows, every possible value of k2 is attained as the

matching row index of j once and only once.

Therefore, as we move across the ith column of PQ, each new value of j will give a new

corresponding row index k2 such that qk2j = 1, and exactly one of these row indices will have

the property that k2 = k1. Thus, there will be exactly one entry along the ith row of PQ that

has a value of 1, and all other entries will have a value of 0. A similar argument holds for

each column of PQ. By definition, PQ is therefore a permutation matrix.
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(ii) Let P = (pij) be a permutation matrix of size n×n. Its transpose PT = (p̃ij) is also a matrix

of size n× n, with entries p̃ij = pji. The (i, j) entry of the product PPT is given by

n∑
k=1

pikp̃kj =

n∑
k=1

pikpjk .

As discussed above, for each row i, there is a unique k1 ∈ {1, . . . , n} such that pik1
= 1. For

every other value of k, pik = 0. As there exists only a single non-zero value in each column of

P , if i ̸= j, then for any k2 such that pjk2
= 1, we have pik2

= 0. Hence, if i = j,

n∑
k=1

pikp̃kj =

n∑
k=1

pikpjk = pik1
pjk1

= (1)(1) = 1 .

Otherwise, if i ̸= j,

n∑
k=1

pikp̃kj =

n∑
k=1

pikpjk = pik1
pjk1

+ pik2
pjk2

= (1)(0) + (0)(1) = 0 .

Therefore, the (i, j) entry of PPT is equal to 1 if i = j, and 0 if i ̸= j, and so PPT = In. By

Corollary 7.6.10, the inverse of P exists and P−1 = PT .

(iii) By part (ii), for any permutation matrix P , we have PPT = I. We know that for any identity

matrix I, det(I) = 1. Moreover, by the multiplicativity property of the determinant (Theorem

8.3.12), we have

det(P ) det(PT ) = det(PPT ) = det(I) = 1 .

Finally, we use Theorem 8.3.8 to show that

det(PT ) = det(P ) ,

and thus

(det(P ))2 = det(P ) det(PT ) = 1 ,

showing that det(P ) must either equal 1 or −1.
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(iv) Changing all of the non-zero entries of A to 1, we have

P =



0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0


.

The effect of left-multiplying a matrix P by a diagonal matrix D = (dij) is to re-scale the ith

row of P by a factor of dii (the ith entry along the diagonal of D). Thus, if we take

D =



25 0 0 0

0 4 0 0

0 0 19 0

0 0 0 92


,

we then have

DP =



25 0 0 0

0 4 0 0

0 0 19 0

0 0 0 92





0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0


=



0 0 25 0

0 4 0 0

0 0 0 19

92 0 0 0


= A .

(v) By part (iii), we know that det(P ) = ±1. (In fact, direct computation shows that det(P ) = 1).

Theorem 8.2.8 tells us that the determinant of D is equal to the product of its diagonal entries,

hence det(D) = 174800. Since neither of these values are zero, their product is also non-zero,

and so, by Theorem 8.3.12,

det(A) = det(DP ) = det(D) det(P ) ̸= 0 .

Hence, by Theorem 8.3.5, the matrix A is invertible. As A = DP , we can use the result of

Theorem 7.1.19 to find

A−1 = P−1D−1 .
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We know from part (ii) that P−1 = PT , and so this is simple to evaluate;

P−1 = PT =



0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0


.

As the effect of the diagonal matrix D is to simply re-scale the ith row of a matrix by its ith

diagonal entry dii, its inverse is the diagonal matrix with diagonal entries 1
dii

, i.e.

D−1 =



1
25 0 0 0

0 1
4 0 0

0 0 1
19 0

0 0 0 1
92


.

Hence,

A−1 =



0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0





1
25 0 0 0

0 1
4 0 0

0 0 1
19 0

0 0 0 1
92



=



0 0 0 1
92

0 1
4 0 0

1
25 0 0 0

0 0 1
19 0


.

9


