Vectors \& Matrices

Problem Sheet 10

1. Evaluate the following determinants:
(i) $\left|\begin{array}{ccc}3 & 1 & -2 \\ -4 & 5 & 4 \\ 1 & 2 & -1\end{array}\right|$
(ii) $\left|\begin{array}{ccc}6 & 2 & -4 \\ 1 & 2 & -1 \\ -4 & 5 & 4\end{array}\right|$
(iii) $\left|\begin{array}{cccc}3 & 6 & 2 & -4 \\ 2 & 6 & 2 & -4 \\ -7 & 1 & 2 & -1 \\ -1 & -4 & 5 & 4\end{array}\right|$
2. Prove that for any $n \times n$ matrix A and scalar $\alpha \in \mathbb{R}$,

$$
\operatorname{det}(\alpha A)=\alpha^{n} \operatorname{det}(A)
$$

3. Let $x_{1}<x_{2}$ be real-valued solutions to a quadratic equation $a x^{2}+b x+c=0$ (with $a, b, c \in \mathbb{R}$ and $a \neq 0$). Show that

$$
\left|\begin{array}{cc}
x_{1} & x_{1}^{2} \\
x_{2} & x_{2}^{2}
\end{array}\right|=\frac{c \sqrt{b^{2}-4 a c}}{a^{2}} .
$$

4. Permutation Matrices are square matrices that have exactly one non-zero entry in each row and each column, and these non-zero entries are all equal to 1 .
(i) Prove that the product of two permutation matrices is a permutation matrix.
(ii) Prove that the transpose of a permutation matrix is also its inverse.
(iii) Show that the determinant of a permutation matrix is always equal to 1 or -1 .
(iv) Consider the matrix

$$
A=\left(\begin{array}{cccc}
0 & 0 & 25 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 19 \\
92 & 0 & 0 & 0
\end{array}\right)
$$

Let P be the permutation matrix formed by changing all of the non-zero values in A to 1 . Find a diagonal matrix D such that $A=D P$.
(v) Show that A is invertible and find A^{-1}.

