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1.
We use the Bridge.txt dataset available on QMPlus, where information from 45 bridge
projects are compiled. The response and predictor variables are as follows:

• Y : Time is the design time in person-days;

• X1: DArea is the deck area of bridge (000 sq ft);

• X2: CCost is the construction cost ($000);

• X3: Dwgs is the number of structural drawings;

• X4: Length is the length of bridge (ft);

• X5: Spans is the number of spans.

Take the logarithm transformation of all the variables.

(a) Before running the model, we need to take the logarithm of all the variables con-
sidered:

> data <- read.table("bridge.txt", header=TRUE)
> attach(data)
> Y<- log(data[,2])
> X1 <- log(data[,3])
> X2 <- log(data[,4])
> X3 <- log(data[,5])
> X4 <- log(data[,6])
> X5 <- log(data[,7])

Then, we run the model with all the explanatory variables:

> m1 <- lm(Y ~ X1 + X2 + X3 + X4 + X5)
> summary(m1)

Call:
lm(formula = Y ~ X1 + X2 + X3 + X4 + X5)

Residuals:
Min 1Q Median 3Q Max

-0.68394 -0.17167 -0.02604 0.23157 0.67307

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.28590 0.61926 3.691 0.000681 ***
X1 -0.04564 0.12675 -0.360 0.720705



X2 0.19609 0.14445 1.358 0.182426
X3 0.85879 0.22362 3.840 0.000440 ***
X4 -0.03844 0.15487 -0.248 0.805296
X5 0.23119 0.14068 1.643 0.108349
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3139 on 39 degrees of freedom
Multiple R-squared: 0.7762,Adjusted R-squared: 0.7475
F-statistic: 27.05 on 5 and 39 DF, p-value: 1.043e-11

The only statistically significant at 5% level variable is X3 (number of structural
drawing) and the intercept, while all the other variables are not significant at any
level. This regression is overall significant with a F-statistic of 27.05 and a p-value
smaller that 5%. The adjustedR2 is higher with a value of 74.75%, thus explaining
an high variation in the data. As a further results, we have a look at the VIF values

> vif(m1)
X1 X2 X3 X4 X5

7.164619 8.483522 3.408900 8.014174 3.878397

All the values are smaller than 10, thus we do not have strong problems of multi-
collinearity.
Thus, we find the best reduced model by using the AIC procedure. We start with
the backward elimination procedure:

> reduced.model <- step(m1, direction="backward")
Start: AIC=-98.71
Y ~ X1 + X2 + X3 + X4 + X5

Df Sum of Sq RSS AIC
- X4 1 0.00607 3.8497 -100.640
- X1 1 0.01278 3.8564 -100.562
<none> 3.8436 -98.711
- X2 1 0.18162 4.0252 -98.634
- X5 1 0.26616 4.1098 -97.698
- X3 1 1.45358 5.2972 -86.277

Step: AIC=-100.64
Y ~ X1 + X2 + X3 + X5

Df Sum of Sq RSS AIC
- X1 1 0.01958 3.8693 -102.412
<none> 3.8497 -100.640
- X2 1 0.18064 4.0303 -100.577
- X5 1 0.31501 4.1647 -99.101
- X3 1 1.44946 5.2991 -88.260



Step: AIC=-102.41
Y ~ X2 + X3 + X5

Df Sum of Sq RSS AIC
<none> 3.8693 -102.412
- X2 1 0.17960 4.0488 -102.370
- X5 1 0.29656 4.1658 -101.089
- X3 1 1.44544 5.3147 -90.128

Thus, backward elimination based on AIC chooses the model with the three pre-
dictors X2, X3 and X5, which are the logarithm of the construction cost; of the
number of structural drawings and of the number of spans.
Based on the forward selection based on the AIC, arrives at the same model as
backward elimination based on AIC.

> modyn <- lm(Y ~ 1)
> aic.forward.model <- step(modyn, scope=~X1 + X2 + X3 + X4 + X5,
direction="forward")
Start: AIC=-41.35
Y ~ 1

Df Sum of Sq RSS AIC
+ X3 1 12.1765 4.9975 -94.898
+ X2 1 11.6147 5.5593 -90.104
+ X1 1 10.2943 6.8797 -80.514
+ X4 1 10.0120 7.1620 -78.704
+ X5 1 8.7262 8.4478 -71.274
<none> 17.1740 -41.347

Step: AIC=-94.9
Y ~ X3

Df Sum of Sq RSS AIC
+ X5 1 0.94866 4.0488 -102.370
+ X2 1 0.83170 4.1658 -101.089
+ X4 1 0.66914 4.3284 -99.366
+ X1 1 0.47568 4.5218 -97.399
<none> 4.9975 -94.898

Step: AIC=-102.37
Y ~ X3 + X5

Df Sum of Sq RSS AIC
+ X2 1 0.179598 3.8693 -102.41
<none> 4.0488 -102.37
+ X1 1 0.018535 4.0303 -100.58
+ X4 1 0.016924 4.0319 -100.56



Step: AIC=-102.41
Y ~ X3 + X5 + X2

Df Sum of Sq RSS AIC
<none> 3.8693 -102.41
+ X1 1 0.019578 3.8497 -100.64
+ X4 1 0.012868 3.8564 -100.56

Thus in conclusion the best model is

Y = β0 + β1X3 + β2X5 + β3X2 + ε

where the variables are taken in logarithm.

(b) We run the best model in R by using the following commands:

> modfinal <- lm(Y ~ X3 + X5 + X2)

and then we compute the VIF for this model:

> vif(modfinal)
X3 X5 X2

3.245326 2.509206 4.905365

Also in this case, the three values are all smaller than 10, thus we do not have any
problem of multicollinearity.

2. a-b Based on the best model selected, thus the one with X3; X5 and X2 in logarithmic
transformation, we have:

> modfinal <- lm(Y ~ X3 + X5 + X2)
> summary(modfinal)

Call:
lm(formula = Y ~ X3 + X5 + X2)

Residuals:
Min 1Q Median 3Q Max

-0.69415 -0.17456 -0.03566 0.22739 0.64945

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.3317 0.3577 6.519 7.9e-08 ***
X3 0.8356 0.2135 3.914 0.000336 ***
X5 0.1963 0.1107 1.773 0.083710 .
X2 0.1483 0.1075 1.380 0.175212
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Residual standard error: 0.3072 on 41 degrees of freedom
Multiple R-squared: 0.7747,Adjusted R-squared: 0.7582
F-statistic: 46.99 on 3 and 41 DF, p-value: 2.484e-13

From the summary of the linear regression model, we have that the explanatory
variable associated with the number of drawings remains statistically significant,
while the variable related to the number of spans becomes statistically significant
but only at 10% level. The overall regression is highly statistically significant with
a F-statistic equal to 46.99 and a p-value really small. Looking at the adjusted R2

of the model with all the 5 explanatory variables and the best AIC model, we have
that it improves from 74.75% to 75.82%. It is a small improvement in term of
adjusted R2, but in term of AIC, it is an important improvement.

> anova(modfinal)
Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

X3 1 12.1765 12.1765 129.0266 3.063e-14 ***
X5 1 0.9487 0.9487 10.0523 0.002878 **
X2 1 0.1796 0.1796 1.9031 0.175212
Residuals 41 3.8693 0.0944
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Looking at the Anova table, we have that variable 2 (construction cost) is not
statistically significant once variable 3 and 5 are included in the model. However,
this variable is included in the model by the AIC.
Figure 1.1 shows the standardized residuals versus the fitted values (left) and the
QQ plot (right). For the constant variance assumption, we do not have any prob-
lem, while for the normality assumption, the QQ plot shows some issues on both
tails. In particular, the left tails seems out of the Normal distribution, but before
making strong assumption, we had a look at the Shapiro-Wilk test:

> shapiro.test(stdresfinal)

Shapiro-Wilk normality test

data: stdresfinal
W = 0.97452, p-value = 0.4175

The test gives a strong p-value of 0.42, thus we do not reject the null hypothesis
of normality assumption of the standardized residuals.

3. When fitting the model
E[Yi] = β0 + β1x1,i + β2x2,i
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Figure 1.1: Plot of standardized residuals versus fitted values (left) and QQ plot (right) for the
model with three explanatory variables.

to a set of n = 25 observations, the following results were obtained using the general
linear model notation:

X tX =

 25 219 10232
219 3055 133899

10232 133899 6725688

 , X tY =

 559.60
7375.44

337071.69


(
X tX

)−1
=

 0.1132 −0.0044 −0.00008
−0.0044 0.0027 −0.00004
−0.00008 −0.00004 0.000001


Also Y tY = 18310.63 and Ȳ = 22.384.

(a) In order to compute the AIC criterion we need to find:

AIC = 2(p+ 1) − 2 logL

where

−2 logL = n(log2π + log σ̂2 + 1)

and the MLE of σ2 is σ̂2 = SSE

n
. In our case, we have already compute the SSE

in the previous courseworks, thus

SSE = SST − SSR =
(
Y tY − nȳ2

)
−
(
β̂tX tY − nȳ2

)
= 5784.54 − 5550.81 = 233.73

The MLE of σ2 is

σ̂2 =
SSE

n
=

233.73

25
= 9.3492



In our scenario, we have the number of observations, n, equal to 25 and the number
of regression parameters, p, equal to 3. Thus, the AIC is equal to:

AIC = 2(3 + 1) + 25(log2π + log 9.3492 + 1) = 8 + 126.8292 = 134.8292

Then we can compute the V IF , which is

V IF =
1

1 −R2
= 24.748

which is bigger than 10, thus we have some problems of multicollinearity in the
data.

(b) In the same way, run a two dimensional model:

E[Yi] = β + β1x1,i

to the same set of 25 observations and we have the following results:

X tX =

(
25 219
219 3055

)
, X tY =

(
559.60
7375.44

)
(
X tX

)−1
=

(
0.1075 −0.0077
−0.0077 0.00087

)
As stated in point (a), we need to run the AIC by using the usual formula, where
in our case, p is changing to 2 and the σ̂2 is changing too. In the two-dimensional
problem, we have that

SSR = 5382.409 SSE = 402.1338

Thus the MLE estimator of σ2 is equal to 16.0853 and the AIC is

AIC = 2(2 + 1) + 25(log2π + log 16.0853 + 1) = 6 + 140.3946 = 146.3946

Moving to the V IF , we have 14.38462, which is a bigger than 10 value.

(c) In conclusion, based on the AIC the best model results the one with two explana-
tory variables.


