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Question 1. [10 marks] Let x be a real number such that x 6= 1. Prove by
mathematical induction that

1+ x+ x2 + · · ·+ xn−1 =
xn−1
x−1

for every natural number n > 1. [10]

Solution Let P(n) be the statement 1+ x+ x2 + · · ·+ xn−1 = (xn−1)/(x−1).
The base case requires that we establish P(1). Here P(1) says that
1 = (x−1)/(x−1), which is manifestly true by cancelling x−1 from numerator
and denominator.
We proceed to the inductive step. Suppose that P(n) is true for some n. Then

(1+ x+ x2 + · · ·+ xn−1)+ xn =
xn−1
x−1

+ xn

=
xn−1+ xn(x−1)

x−1

=
xn−1+ xn+1− xn

x−1

=
xn+1−1

x−1
.

So P(n+1) is true whenever P(n) is true. Hence by induction, P(n) is true for all
n > 1.

Question 1 is standard: students have seen an abundance of similar examples in
lecture and problem sheets, in this module and others. (Few if any of them have
contained a free parameter, though.)

Question 2. [13 marks]

(a) Give the definition of a partition of a set X . [3]

(b) Write down:

(i) a set X , and a relation on X which is neither symmetric nor transitive. [2]

(ii) a partition of Z in which every part has cardinality two. [2]

(c) Let {A1,A2, . . .} be a partition of a set X . Prove that the relation R on X
defined by

xRy if and only if there is some i such that x ∈ Ai and y ∈ Ai

is an equivalence relation. [6]
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Solution (a) A partition of X is a collection {A1,A2, . . .} of subsets of X , called
its parts, having the following properties:

(a) Ai 6= /0 for all i;

(b) Ai∩A j = /0 for all i 6= j;

(c) A1∪A2∪·· ·= X .

[This is as given in the lecture notes. It implicitly assumes the set of parts is
countable; for exam purposes I don’t care about that restriction.]
(b)(i) One example is X = {1,2,3} with the relation R = {(1,2),(2,3)}.
(ii) One example is

{{2k,2k+1} : k ∈ Z}= {. . . ,{−2,−1},{0,1},{2,3},{4,5}, . . .}

(c)

• x and x lie in the same part of the partition {A1,A2, . . .}, so R is reflexive.

• If x and y lie in the same part of the partition, then so do y and x; so R is
symmetric.

• Suppose that x and y lie in the same part Ai of the partition, and y and z lie in
the same part A j. Then y ∈ Ai and y ∈ A j, so y ∈ Ai∩A j; so we must have
Ai = A j, since different parts of a partition are disjoint. Thus x and z both lie
in Ai. So R is transitive.

Thus R is an equivalence relation.

Questions 2(a,c) are bookwork; 2(b) is unseen.

Question 3. [21 marks]

(a) Use Euclid’s algorithm to find the greatest common divisor of 288 and 111.
Show all your working. [6]

(b) Does the equation 288x+111y = 6 have a solution where x and y are
integers? Find one if so, showing your working, or explain why not if not. [10]

(c) Define what it means for an element of a ring to be a unit. [2]

(d) Is [111]288 a unit in the ring Z288? Why or why not? [3]
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Solution (a) We calculate

288 = 2 ·111+66
111 = 1 ·66+45
66 = 1 ·45+21
45 = 2 ·21+3
21 = 7 ·3+0,

so the greatest common divisor is 3.
(b) We may use the extended Euclidean algorithm to find an integer solution to
288x′+111y′ = 3. For this we unwind the calculations from part (a):

3 = 1 ·45−2 ·21 = 1 ·45−2 · (66−1 ·45)
=−2 ·66+3 ·45 =−2 ·66+3 · (111−1 ·66)
= 3 ·111−5 ·66 = 3 ·111−5 · (288−2 ·111)
=−5 ·288+13 ·111.

So x′ =−5 and y′ = 13 arrange that 288x′+111y′ = 3.
To find a solution to 288x+111y = 6 it suffices to double both sides of the
preceding equation. Therefore x =−10 and y = 26 is a solution.
(c) An element u ∈ R is called a unit if there is an element v ∈ R such that
uv = vu = 1.
(d) No. By Theorem 6.3 from the notes, [a]m has a multiplicative inverse if and only
if gcd(a,m) = 1. But we computed the gcd in part (a) and found it to equal 3, not 1.

Question 3(a) is standard; 3(b) is a less standard problem but still one they’ve seen;
3(c) is bookwork; and 3(d) an easy application of a familiar test.

Question 4. [14 marks] Let H= {α +β j : α,β ∈ C} be the set of quaternions.
Define a function ϕ : H→M2(C) by

ϕ(α +β j) =
(

α β

−β̄ ᾱ

)
.

(a) Write down the definition of multiplication for quaternions. [2]

(b) Prove that ϕ(q · r) = ϕ(q) ·ϕ(r) for any two quaternions q,r ∈H. [4]

(c) Prove that ϕ is an injective function. [3]

(d) Use parts (b) and (c) to prove that the quaternions satisfy the associative law
for multiplication. You may assume that M2(C) is a ring. [5]
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Solution (a) Multiplication in the quaternions is defined by

(α +β j)(γ +δ j) := (αγ−β δ̄ )+(αδ +β γ̄) j

where α,β ,γ,δ ∈ C.
(b) Let q = α +β j and r = γ +δ j. Then

ϕ(α +β j)ϕ(γ +δ j) =
(

α β

−β̄ ᾱ

)(
γ δ

−δ̄ γ̄

)
=

(
αγ−β δ̄ αδ +β γ̄

−β̄ γ− ᾱδ̄ −β̄ δ + ᾱ γ̄

)
while, by the definition of quaternion multiplication

ϕ((α +β j)(γ +δ j)) = ϕ((αγ−β δ̄ )+(αδ +β γ̄) j)

=

(
αγ−β δ̄ αδ +β γ̄

−(αδ +β γ̄) αγ−β δ̄

)

=

(
αγ−β δ̄ αδ +β γ̄

−ᾱδ̄ − β̄ γ ᾱ γ̄− β̄ δ

)
which is equal. In the last step we used the rules z+w = z̄+ w̄, zw = z̄w̄, and ¯̄z = z
for complex numbers z and w.
(c) We must show that if q = α +β j and r = γ +δ j are two quaternions with
ϕ(α +β j) = ϕ(γ +δ j), that is(

α β

−β̄ ᾱ

)
=

(
γ δ

−δ̄ γ̄

)
,

then α +β j equals γ +δ j. But this is clear: equating upper-left entries of the
matrices gives α = γ , and equating upper-right entries gives β = δ .
(d) Let q, r, and s be quaternions. Then, by part (b) repeatedly,

ϕ(q(rs))=ϕ(q)ϕ(rs)=ϕ(q)(ϕ(r)ϕ(s))= (ϕ(q)ϕ(r))ϕ(s)=ϕ(qr)ϕ(s)=ϕ((qr)s),

using associativity of multiplication in M2(C) in the middle. But by part (c) this
implies q(rs) = (qr)s, so quaternion multiplication is associative.

Question 4(a) is bookwork; the remainder of the question is verbatim coursework.

Question 5. [14 marks]
(a) Let R be a ring. Define what it means for R to be

(i) a commutative ring; [2]
(ii) a skewfield. [2]

Give the full statement of any axioms you invoke.

(b) Let R be a ring. Prove from the axioms that a ·0 = 0 for any a ∈ R. [6]

(c) Let R be a ring, and a ∈ R an element such that a2 = 0. Must it be true that
a = 0? Justify your answer. [4]
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Solution (a)(i) A commutative ring is a ring R which satisfies the commutative
law for multiplication:

xy = yx for all x,y ∈ R.

(ii) A skewfield is a ring R which satisfies the identity and inverse laws for
multiplication and the nontriviality law. In order, these assert:

there exists an element 1 ∈ R such that 1x = x = x1 for all x ∈ R;
for all x ∈ R\{0} there exists y ∈ R such that xy = 1 = yx;
1 6= 0.

[I did not make a point of the nontriviality law in lecture, so I will not mark down
solutions that omit to mention it.]
(b) We start with 0+0 = 0, which holds by the additive identity law. Multiplying
this equation on the right by a gives (0+0)a = 0a. Using distributivity gives
0a+0a = 0a. But 0a+0 = 0a by the additive identity law. So 0a+0a = 0a+0.
At this point we only need to perform cancellation. As such, adding the additive
inverse of 0a to each side gives

−(0a)+(0a+0a) =−(0a)+(0a+0).

Successive invocation on each side of this equation of associativity, the inverse law,
and the zero law for addition bring this to 0a = 0, as required.
(c) No. For example, in the ring Z4, the element [2]4 is a nonzero element whose
square is zero.

Questions 5(a,b) are bookwork; 5(c) is unseen, though examples have been
presented explicitly in other contexts.

Question 6. [14 marks]

(a) Let G and H be groups, with respective operations ◦ and ∗. Define what it
means for

(i) G to be a subgroup of H; [2]

(ii) G and H to be isomorphic. [2]

(b) Prove that
{a2/b2 : a and b are nonzero integers}

is a subgroup of the multiplicative group Q×. [6]

(c) Suppose that G is a nonabelian group and H is an abelian group. With
reference to the definition, explain why G and H cannot be isomorphic. [4]
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Solution (a)(i) G is a subgroup of H if G is a subset of H and g◦h = g∗h for all
g,h ∈ H.
(ii) G and H are isomorphic if there is a bijective function F : G→ H such that
F(g1 ◦g2) = F(g1)∗F(g2) for all g1,g2 ∈ G.
(b) Let H be the set in question. Clearly H ⊆Q× as sets. So we may use the
subgroup test: we must show that for any two elements h1,h2 ∈ H, we also have
h1(h2)

−1 ∈ H. By the definition of H, we may write h1 = a2/b2 and h2 = c2/d2,
where a,b,c,d are nonzero integers. Then (h2)

−1 = d2/c2 and
h1(h2)

−1 = (ad)2/(bc)2, which is an element of H. This completes the proof.
(c) Since G is nonabelian, there exist elements g1,g2 ∈ G such that
g1 ◦g2 6= g2 ◦g1. Assuming that G and H were isomorphic, there would exist a
bijection F as in part (a)(ii). Then

F(g1)∗F(g2) = F(g1 ◦g2) 6= F(g2 ◦g1) = F(g2)∗F(g1),

the inequality following from injectivity of F . This is a contradiction, because
F(g1) and F(g2) are elements of the abelian group H.

Question 6(a) is bookwork; 6(b) is a proof of a type with precedents in lecture and
coursework; 6(c) is unseen, though was mentioned in lecture in an unelaborated
way.

Question 7. [14 marks] Let g be the element

(1 3 10)(2 5 12)(4 6 7 11 9)

of S12, written in cycle notation, and let h be the element(
1 2 3 4 5 6 7 8 9 10 11 12
4 12 5 3 10 2 11 1 9 8 7 6

)
of S12, written in two-line notation.

(a) Write g in two-line notation. [3]

(b) Compute (gh)−1 and write your answer in cycle notation. [6]

(c) Define the order of an element of a group. [2]

(d) What is the order of h? [3]
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Solution (a) This is a matter of tabulating, for each element of {1, . . . ,12}, which
element follows it in the cycle containing it (which may be a trivial cycle). We get

g =

(
1 2 3 4 5 6 7 8 9 10 11 12
3 5 10 6 12 7 11 8 4 1 9 2

)
.

(b) The product gh is computed by working out g(h(x)) for each x ∈ {1, . . . ,12}
(bear in mind that we use left actions). Since we want a result in cycle notation, we
can work through the values x in the order they arise in cycles in progress. This
gives (gh) = (1 6 5)(3 12 7 9 4 10 8). The inverse can then be computed by
reversing all cycles: (gh)−1 = (1 5 6)(3 8 10 4 9 7 12).
(c) The order of an element h of a group is the smallest positive integer n for
which hn = e, if such a number exists. If no positive power of h is equal to e, we
say that h has infinite order.
(d) The order of a permutation is the lcm of the lengths of its cycles. So converting
h to cycle notation, h = (1 4 3 5 10 8)(2 12 6)(7 11), we readily see that its order is
lcm(6,3,2,1) = 6.

Question 7 is standard.

End of Paper.
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